8,240 research outputs found

    Posterior Lumbar Interbody Fusion via a Unilateral Approach

    Get PDF
    This study sought to determine the outcomes of posterior lumbar interbody fusion (PLIF), via a unilateral approach, in selected patients who presented with unilateral leg pain and segmental instability of the lumbar spine. Patients with a single level of a herniated disc disease in the lumbar spine, unilateral leg pain, chronic disabling lower back pain (LBP), and a failed conservative treatment, were considered for the procedure. A total of 41 patients underwent a single-level PLIF using two PEEK™ (Poly-Ether-Ether-Ketone) cages filled with iliac bone, via a unilateral approach. The patients comprised 21 women and 20 men with a mean age of 41 years (range: 22 to 63 years). Two cages were inserted using a unilateral medial facetectomy and a partial hemilaminectomy. At follow-up, the outcomes were assessed using the Prolo Scale. The success of the fusion was determined by dynamic lumbar radiography and/or computerized tomography scanning. All the patients safely underwent surgery without severe complications. During a mean follow-up period of 26 months, 1 patient underwent percutaneous pedicle screw fixation due to persistent LBP. A posterior displacement of the cage was found in one patient. At the last follow up, 90% of the patients demonstrated satisfactory results. An osseous fusion was present in 85% of the patients. A PLIF, via a unilateral approach, enables a solid union with satisfactory clinical results. This preserves part of the posterior elements of the lumbar spine in selected patients with single level instability and unilateral leg pain

    Effects of the timing of electroporation during in vitro maturation on triple gene editing in porcine embryos using CRISPR/Cas9 system

    Get PDF
    Mosaicism, including alleles comprising both wild-type and mutant, is a serious problem for gene modification by gene editing using electroporation. One-step generation of F0 pigs with completely desired gene modifications saves cost and time, but the major obstacles have been mosaic mutations. We hypothesized that the timing of electroporation prior to in vitro fertilization (IVF) can increase the rates of biallelic mutation for multiple gene knockout as the permeability of mature oocytes is greater than that of zygotes. Hence, we determined whether the timing of electroporation during in vitro maturation (IVM) culture enhances triple gene editing in the resulting blastocysts. Three gRNAs targeting KDR, PDX1, and SALL1 were simultaneously introduced into the oocytes that had been incubated for 40, 42, and 44 h from the start of the IVM culture. Electroporation with three gRNAs at 40 h and 42 h during IVM culture decreased the blastocyst formation rates and did not improve the mutation rates and target number of biallelic mutations in the resulting blastocysts. The blastocyst formation rate, mutation rates, and target numbers in the resulting blastocysts from oocytes treated by electroporation at 44 h of IVM culture were similar to those of control zygotes electroporated at 13 h after the initiation of IVF. In conclusion, multiple gene editing efficiency in the resulting blastocysts was comparable between oocytes electroporated before and after the fertilization, indicating that oocytes with completed maturation time may allow better functioning of materials accepting gene editing application

    Multiple gene editing in porcine embryos using a combination of microinjection, electroporation, and transfection methods

    Get PDF
    Background and Aim: Mosaicism – the presence of both wild-type and mutant alleles – is a serious problem for zygotic gene modification through gene editing using the Clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR/ Cas9) system. Different delivery methods, such as microinjection (MI), electroporation (EP), and transfection (TF), can be used to transfer CRISPR/Cas9 components into porcine zygotes. This study aimed to develop a method that combines MI, EP, and TF to improve mutation efficiency mediated through the CRISPR/Cas9 system for a triple-gene knockout in pigs. Materials and Methods: The study consisted of three groups: The MI group with three simultaneously microinjected guide RNAs (gRNAs) targeting α-1,3-galactosyltransferase (GGTA1), cytidine 32 monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), and β-1,4-N-acetyl-galactosaminyltransferase 2 (B4GALNT2); the MI + EP group with two gRNAs targeting GGTA1 and B4GALNT2 genes delivered into zygotes through MI, followed by EP of gRNA targeting the CMAH 1 h later; and the MI + EP + TF group with MI of gRNA targeting GGTA1 gene into zygotes, followed by EP of gRNA targeting CMAH 1 h later, and then TF of gRNA targeting the B4GALNT2 gene into zona-free zygotes after another hour. Results: The rate of blastocysts carrying mutations in one or two gene(s) was significantly higher in the MI + EP + TF group than in the MI group. However, the blastocyst formation rate of zygotes in the MI + EP + TF group was lower than that of the zygotes in the other treatment groups. Conclusion: The combination of CRISPR/Cas9 delivery methods may improve the mutation efficiency of triple-gene edited porcine blastocysts

    Triple gene editing in porcine embryos using electroporation alone or in combination with microinjection

    Get PDF
    Background and Aim: We previously developed the gene-editing by electroporation (EP) of Cas9 protein method, in which the CRISPR/Cas9 system was introduced into porcine in vitro fertilized (IVF) zygotes through EP to disrupt a target gene. This method should be further developed, and a combination of EP and MI methods should be evaluated in pigs. This study aimed to determine that a combination of microinjection (MI) and EP of CRISPR/Cas9 system could increase the rates of biallelic mutation for triple-gene knockout in porcine blastocysts. We targeted the pancreatic and duodenal homeobox1 (PDX1) gene using cytoplasmic MI 1 h before or after EP, which was used to edit alpha-1,3-galactosyltransferase (GGTA1) and cytidine 32 monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes in porcine zygotes. Materials and Methods: We introduced guide RNAs targeting PDX1, GGTA1, and CMAH with the Cas9 protein into IVF zygotes (one-cell stage) through EP 10 h after the start of IVF (IVF; EP group) or in combination with MI (1 h before, MI-EP group, or after EP treatment EP-MI group) and evaluated the blastocyst formation rate and efficiency of target mutations in the resulting blastocysts. Results: Our results revealed a significant reduction in the rate of blastocyst formation in the two groups that underwent MI before and after EP (MI-EP and EP-MI group), compared with that in the groups treated with EP alone (EP group) (p=0.0224 and p<0.0001, respectively) and control (p=0.0029 and p<0.0001, respectively). There was no significant difference in the total mutation rates among the treatment groups in the resulting blastocysts. As an only positive effect of additional MI treatment, the rate of blastocysts carrying biallelic mutations in at least one target gene was higher in the MI-EP group than in the EP group. However, there was no difference in the rates of embryos carrying biallelic mutations in more than 2 target genes. Conclusion: These results indicate that although a combination of MI and EP does not improve the mutation efficiency or biallelic mutation for triple-gene knockout, MI treatment before EP is better to reduce mortality in porcine zygotic gene editing through a combination of MI and EP

    Genomic characterization of Nocardia seriolae strains isolated from diseased fish

    Get PDF
    Members of the genus Nocardia are widespread in diverse environments; a wide range of Nocardia species are known to cause nocardiosis in several animals, including cat, dog, fish, and humans. Of the pathogenic Nocardia species, N. seriolae is known to cause disease in cultured fish, resulting in major economic loss. We isolated two N. seriolae strains, CK‐14008 and EM15050, from diseased fish and sequenced their genomes using the PacBio sequencing platform. To identify their genomic features, we compared their genomes with those of other Nocardia species. Phylogenetic analysis showed that N. seriolae shares a common ancestor with a putative human pathogenic Nocardia species. Moreover, N. seriolae strains were phylogenetically divided into four clusters according to host fish families. Through genome comparison, we observed that the putative pathogenic Nocardia strains had additional genes for iron acquisition. Dozens of antibiotic resistance genes were detected in the genomes of N. seriolae strains; most of the antibiotics were involved in the inhibition of the biosynthesis of proteins or cell walls. Our results demonstrated the virulence features and antibiotic resistance of fish pathogenic N. seriolae strains at the genomic level. These results may be useful to develop strategies for the prevention of fish nocardiosis.

    Various levels of rapeseed meal in weaning pig diets from weaning to finishing periods

    Get PDF
    Objective This experiment was conducted to investigate the influence of rapeseed meal (RSM) supplementation in weaning pig diet on growth performance, blood profile, carcass characteristics and economic analysis on weaning to finishing pigs. Methods A total of 120 cross bred ([Yorkshire×Landrace]×Duroc) weaning pigs were allotted to 5 treatments in a randomized complete block design. Each treatment had 4 replications with 6 pigs per pen. Five different levels of RSM (0%, 2%, 4%, 6%, and 8%) were used as dietary treatments. Results Overall, no treatment showed significant differences in growth performance with increased dietary RSM levels. The concentration of blood urea nitrogen (BUN) decreased as dietary RSM levels increased in 6 weeks (linear response, p<0.01). Total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol, triiodothyronine, and thyroxine showed no significant differences, neither were there any significant differences in the immune response (IgG and IgA). As the dietary RSM levels of weaning pig diet were increased, no differences were found among dietary treatments upon performing proximate analyses of the pork after finishing. The influence of RSM supplementation on nutrient digestibility and nitrogen retention were not affected by dietary RSM levels either. With increased dietary RSM levels in the weaning pig diet, no differences among dietary treatments were found after performing proximate analyses of the pork’s physiochemical properties. In addition, there were no significant differences observed in pork colors, pH levels, and economic benefits. Conclusion Consequently, this experiment demonstrated that weaning pig’s diet containing RSM influenced BUN concentration, but there were no detrimental effects on the growth performance of weaning pigs with up to 8% RSM in the diet

    Low-dimensional perovskite nanoplatelet synthesis using in situ photophysical monitoring to establish controlled growth.

    Get PDF
    Perovskite nanoparticles have attracted the attention of research groups around the world for their impressive photophysical properties, facile synthesis and versatile surface chemistry. Here, we report a synthetic route that takes advantage of a suite of soluble precursors to generate CsPbBr3 perovskite nanoplatelets with fine control over size, thickness and optical properties. We demonstrate near unit cell precision, creating well characterized materials with sharp, narrow emission lines at 430, 460 and 490 nm corresponding to nanoplatelets that are 2, 4, and 6 unit cells thick, respectively. Nanoplatelets were characterized with optical spectroscopy, atomic force microscopy, scanning electron microscopy and transmission electron microscopy to explicitly correlate growth conditions, thickness and resulting photophysical properties. Detailed in situ photoluminescence spectroscopic studies were carried out to understand and optimize particle growth by correlating light emission with nanoplatelet growth across a range of synthetic conditions. It was found that nanoplatelet thickness and emission wavelength increase as the ratio of oleic acid to oleyl amine or the reaction temperature is increased. Using this information, we control the lateral size, width and corresponding emission wavelength of the desired nanoplatelets by modulating the temperature and ratios of the ligand

    Relationship matters: a qualitative study of medical students' experiences in a learner-driven research program in South Korea

    Get PDF
    Background Although research experience is important for medical students, it is difficult to develop research skills only through a formal curriculum. To develop research programs that address the authentic needs of students and align with the entirety of the medical school curriculum, a learner-centered approach may be more effective than an instructor-centered approach. This study investigates medical student perspectives on factors that help them develop research competency. Methods Hanyang University College of Medicine in South Korea operates the Medical Scientist Training Program (MSTP) as a supplement to its formal curriculum. Semi-structured interviews were held with 18 students (20 cases) in the program, and qualitative content analysis was performed using the software tool MAXQDA20. Results The findings are discussed in relation to three domains: learner engagement, instructional design, and program development. The students were more engaged when they perceived the program as a new experience, had prior research experience, wanted to make a good impression, and felt a sense of contribution. In terms of instructional design, they positively participated in research when their supervisors respected them, set clear tasks, provided constructive feedback, and invited them into the research community. In particular, the students highly valued relationships with their professors, and these relationships served not only as a main motivating factor in their research participation but also affected their college lives and careers. Conclusions The longitudinal relationship between students and professors has newly emerged in the Korean context as a factor that strengthens student engagement in research and the complementary relationship between formal curriculum and MSTP was highlighted to encourage student engagement in research

    Effects of dietary energy and crude protein levels on growth performance, blood profiles, and nutrient digestibility in weaning pigs

    Get PDF
    Objective This experiment was conducted to investigate the effect of reducing dietary metabolic energy (ME) and crude protein (CP) levels on growth performance, blood profiles, and nutrient digestibility in weaning pigs. Methods A total of 240 crossbred pigs (Duroc×[Landrace×Yorkshire]) with an average body weight of 8.67±1.13 kg were used for a 6-week feeding trial. Experimental pigs were allotted to a 2×3 factorial arrangement using a randomized complete block design. The first factor was two levels of dietary ME density (low ME level, 13.40 MJ/kg or high ME level, 13.82 MJ/kg) and the second factor was three dietary CP levels based on subdivision of early and late weaning phases (low CP level, 19.7%/16.9%; middle CP level, 21.7%/18.9%; or high CP level, 23.7%/20.9%). Results Over the entire experimental period, there were no significant difference in body weight among groups, but a decrease in diet energy level was associated with an increase in average daily feed intake (p = 0.02) and decrease in gain-feed ratio (G:F) ratio (p<0.01). Decreased CP levels in the diet were associated with a linear increase in average daily gain (p< 0.05) and quadratic increase in G:F ratio (p<0.05). In the early weaning period, blood urea nitrogen concentration tended to increase when ME in the diet decreased and decrease when CP level in the diet decreased (p = 0.09, p<0.01, respectively). Total protein concentration tended to increase when CP level was reduced (p = 0.08). In the late weaning period, blood urea nitrogen concentration decreased linearly as CP level decreased (p<0.01). The CP and crude fat digestibility decreased when ME was decreased by 0.42 MJ/kg (p = 0.05, p = 0.01, respectively). The CP digestibility increased linearly as CP level decreased (p = 0.01). Conclusion A weaning pig diet containing high ME level (13.82 MJ/kg) and low CP level (19.7%/16.9%) can improve pig growth performance and nutrient digestibility

    Effects of dietary energy and crude protein levels on growth performance, blood profiles, and carcass traits in growing-finishing pigs

    Get PDF
    This experiment was conducted to evaluate the effect of dietary energy and crude protein (CP) levels on growth performance, blood profiles, and carcass traits in growing-finishing pigs. A total of 180 crossbred pigs ([Yorkshire x Landrace] x Duroc) with an average body weight of 30.96 +/- 3.068 kg were used for a 12-week feeding trial. Experimental pigs were allotted to a 2 x 3 factorial arrangement using a randomized complete block (RCB) design. The first factor was two levels of dietary metabolizable energy (ME) density (13.40 MJ/kg or 13.82 MJ/kg), and the second factor was three dietary CP levels based on subdivision of growing-finishing phases (high: 18%/16.3%/16.3%/13.2% middle: 17%/15.3%/15.3%/12.2% and low: 16%/14.3%/14.3%/11.2%). Average daily gain (ADG) and gain-feed ratio (G: F ratio) decreased as dietary CP level was decreased linearly (linear, p &lt; 0.05; p &lt; 0.05, respectively) in the early growing period, and G: F ration also decreased as dietary CP level was decreased linearly (linearly, p &lt; 0.05) over the whole growing phase. Over the entire experimental period, G: F ratio decreased as dietary ME level decreased (p = 0.01). Blood urea nitrogen (BUN) concentration was increased as dietary energy level decreased in growing period (p &lt; 0.01). During finishing period, total protein concentration was decreased by lower dietary energy level (p &lt; 0.05). In this study, there were no significant differences in proximate factors, physiochemical properties, muscle TBARS assay results, pH changes, or color of pork by dietary treatments. However, saturated fatty acid (SFA) increased (p &lt; 0.01) and polyunsaturated fatty acid (PUFA) decreased (p &lt; 0.05) when ME was decreased by 0.42 MJ/kg in growing-finishing pig diets. In addition, monounsaturated fatty acid (MUFA) tended to increase when CP level was decreased in growing-finishing pig diets (p = 0.06). A growing-finishing diet of 13.82 MJ/kg diet of ME with the high CP level can improve growth performance and show better fatty acids composition of pork.N
    corecore