1,985 research outputs found

    Cholinergic Modulation of Attention.

    Full text link
    Rodent studies indicate that cholinergic inputs to frontoparietal cortex play an important role in signal detection, especially in challenging conditions. fMRI studies have likewise shown frontoparietal activity in humans under task conditions parallel to those used in the rodent studies. While these parallels are suggestive, the degree to which the fMRI activation patterns seen in humans reflect cholinergic activity remains unknown. The studies in this dissertation provide stronger evidence for cholinergic influences on the brain systems supporting attention in humans, and begin to delineate how those influences may differ by brain region and interact with other (e.g. dopaminergic) influences to shape cognition and behavior. First, an electroencephalography study showed that gamma synchronization, which previous studies have linked to cholinergic activity and attentional control, increases in response to a distractor challenge. Furthermore, across participants, greater increases in gamma synchronization in parietal cortex were associated with better distractor resistance, whereas greater increases in gamma dispersion in right prefrontal cortex were associated with greater response time variations thought to reflect difficulty in maintaining consistent control. Another series of experiments leveraged variability in cholinergic integrity (measured using PET) in Parkinson’s patients as a natural experiment to determine cholinergic contributions to different aspects of attention and cognitive control. Thalamic cholinergic integrity made the strongest independent contribution to variation in the ability to detect signals under perceptual challenge, whereas cortical cholinergic integrity was the best independent predictor of the ability to resist content-rich distractors likely to draw attention away from the target signal. Exploratory analyses suggested that parietal cholinergic integrity might play an especially important role in resisting these distractors, consistent with the electroencephalography study results. Finally, a secondary data analysis of a larger sample suggested that in conditions making strong demands on executive control, there may be mutual compensation between cholinergic and dopaminergic systems. To summarize, the present findings provide further evidence for cholinergic contributions to frontoparietal brain systems supporting signal detection, attention, and cognitive control, more precisely define the contributions of thalamic, prefrontal, and parietal inputs, and suggest the possibility of mutual compensation with the dopaminergic system in situations of high executive demand.PhDPsychologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111387/1/kaminkim_1.pd

    Ex Post ≠ Ex Ante: Determining Liability in Hindsight

    Get PDF
    Participants in three conditions (foresight, hindsight, and a modified hindsight condition designed to ameliorate the hindsight effect) assessed whether a municipality should take, or have taken, precautions to protect a riparian property owner from flood damage. In the foresight condition, participants reviewed evidence in the context of an administrative hearing. Hindsight participants reviewed parallel materials in the context of a trial. Three quarters of the participants in foresight concluded that a flood was too unlikely to justify further precautions—a decision that a majority of the participants in hindsight found to be negligent. Participants in hindsight also gave higher estimates for the probability of the disaster occurring. The debiasing procedure failed to produce any significant differences from the regular hindsight condition. The results suggest that absent an effective debiasing technique, risk assessments made in foresight will be judged harshly in hindsight

    Intensity-Dependent Changes in Quantified Resting Cerebral Perfusion with Multiple Sessions of Transcranial DC Stimulation

    Get PDF
    Transcranial direct current stimulation (tDCS) to the left prefrontal cortex has been shown to produce broad behavioral effects including enhanced learning and vigilance. Still, the neural mechanisms underlying such effects are not fully understood. Furthermore, the neural underpinnings of repeated stimulation remain understudied. In this work, we evaluated the effects of the repetition and intensity of tDCS on cerebral perfusion [cerebral blood flow (CBF)]. A cohort of 47 subjects was randomly assigned to one of the three groups. tDCS of 1- or 2-mA was applied to the left prefrontal cortex on three consecutive days, and resting CBF was quantified before and after stimulation using the arterial spin labeling MRI and then compared with a group that received sham stimulation. A widespread decreased CBF was found in a group receiving sham stimulation across the three post-stimulation measures when compared with baseline. In contrast, only slight decreases were observed in the group receiving 2-mA stimulation in the second and third post-stimulation measurements, but more prominent increased CBF was observed across several brain regions including the locus coeruleus (LC). The LC is an integral region in the production of norepinephrine and the noradrenergic system, and an increased norepinephrine/noradrenergic activity could explain the various behavioral findings from the anodal prefrontal tDCS. A decreased CBF was observed in the 1-mA group across the first two post-stimulation measurements, similar to the sham group. This decreased CBF was apparent in only a few small clusters in the third post-stimulation scan but was accompanied by an increased CBF, indicating that the neural effects of stimulation may persist for at least 24 h and that the repeated stimulation may produce cumulative effects

    Skills in Handling Turbuhaler, Diskus, and Pressurized Metered-Dose Inhaler in Korean Asthmatic Patients

    Get PDF
    Purpose: The objective of this study was to evaluate skills in handling inhalers and factors associated with these skills among patients with asthma who had undergone treatment at special asthma and allergy clinics in Korea. Methods: We enrolled 78 subjects who used Turbuhaler and 145 who used Diskus for asthma control at special clinics in 10 university hospitals and visually assessed their skills in handling these inhalers. We also evaluated skills in 137 subjects who had used pressurized metered-dose inhalers (pMDIs) for symptom relief. Age, sex, duration of asthma and inhaler use, smoking status, monthly income, highest grade completed in school and previous instruction for handling inhalers were also measured to evaluate their association with overall inhaler skills. Results: Performance grade was inadequate for 12.8% of participants using Turbuhaler, 6.2% for Diskus, and 23.4% for pMDIs. The success rates for each step in handling the inhalers were relatively high except for the "exhale slowly to residual volume" step, in which success rates ranged from 24.2% to 28.5%. Older age, male sex, lower educational grade, and absence of previous instruction for handling inhalers were associated with inadequate inhaler technique in univariate analysis; however, only older age and absence of previous instruction remained significant independent risk factors in multivariate analysis. Conclusions: Among Korean asthmatic patients in special asthma and allergy clinics, skills in handling their inhalers were mostly excellent; meanwhile, older age and absence of previous instruction for handling inhalers were associated with inadequate techniques

    NICE 2023 Zero-shot Image Captioning Challenge

    Full text link
    In this report, we introduce NICE project\footnote{\url{https://nice.lgresearch.ai/}} and share the results and outcomes of NICE challenge 2023. This project is designed to challenge the computer vision community to develop robust image captioning models that advance the state-of-the-art both in terms of accuracy and fairness. Through the challenge, the image captioning models were tested using a new evaluation dataset that includes a large variety of visual concepts from many domains. There was no specific training data provided for the challenge, and therefore the challenge entries were required to adapt to new types of image descriptions that had not been seen during training. This report includes information on the newly proposed NICE dataset, evaluation methods, challenge results, and technical details of top-ranking entries. We expect that the outcomes of the challenge will contribute to the improvement of AI models on various vision-language tasks.Comment: Tech report, project page https://nice.lgresearch.ai

    J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV

    Get PDF
    We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    L\'evy-stable two-pion Bose-Einstein correlations in sNN=200\sqrt{s_{_{NN}}}=200 GeV Au++Au collisions

    Full text link
    We present a detailed measurement of charged two-pion correlation functions in 0%-30% centrality sNN=200\sqrt{s_{_{NN}}}=200 GeV Au++Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from L\'evy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter λ\lambda, the L\'evy index of stability α\alpha and the L\'evy length scale parameter RR as a function of average transverse mass of the pair mTm_T. We find that the positively and the negatively charged pion pairs yield consistent results, and their correlation functions are represented, within uncertainties, by the same L\'evy-stable source functions. The λ(mT)\lambda(m_T) measurements indicate a decrease of the strength of the correlations at low mTm_T. The L\'evy length scale parameter R(mT)R(m_T) decreases with increasing mTm_T, following a hydrodynamically predicted type of scaling behavior. The values of the L\'evy index of stability α\alpha are found to be significantly lower than the Gaussian case of α=2\alpha=2, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition.Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v2 is version accepted for publication in Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of higher cumulants of net-charge multiplicity distributions in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV

    Full text link
    We report the measurement of cumulants (Cn,n=14C_n, n=1\ldots4) of the net-charge distributions measured within pseudorapidity (η<0.35|\eta|<0.35) in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. C1/C2C_1/C_2, C3/C1C_3/C_1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2=μ/σ2C_1/C_2 = \mu/\sigma^2 and C3/C1=Sσ3/μC_3/C_1 = S\sigma^3/\mu can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. C as a Rapid Communication. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore