45 research outputs found

    Spinal Cord Injury Markedly Altered Protein Expression Patterns in the Affected Rat Urinary Bladder during Healing Stages

    Get PDF
    The influence of spinal cord injury (SCI) on protein expression in the rat urinary bladder was assessed by proteomic analysis at different time intervals post-injury. After contusion SCI between T9 and T10, bladder tissues were processed by 2-DE and MALDI-TOF/MS at 6 hr to 28 days after SCI to identify proteins involved in the healing process of SCI-induced neurogenic bladder. Approximately 1,000 spots from the bladder of SCI and sham groups were visualized and identified. At one day after SCI, the expression levels of three protein were increased, and seven spots were down-regulated, including heat shock protein 27 (Hsp27) and heat shock protein 20 (Hsp20). Fifteen spots such as S100-A11 were differentially expressed seven days post-injury, and seven proteins including transgelin had altered expression patterns 28 days after injury. Of the proteins with altered expression levels, transgelin, S100-A11, Hsp27 and Hsp20 were continuously and variably expressed throughout the entire post-SCI recovery of the bladder. The identified proteins at each time point belong to eight functional categories. The altered expression patterns identified by 2-DE of transgelin and S100-A11 were verified by Western blot. Transgelin and protein S100-A11 may be candidates for protein biomarkers in the bladder healing process after SCI

    Proteomic Analysis of Rat Brains Following Exposure to Electroconvulsive Therapy

    Get PDF
    Electroconvulsive therapy (ECT) is one of the most effective treatments used in psychiatry to date. The mechanisms of ECT action, however, are the least understood and still unclear. As a tool to elucidate the mechanisms of action of ECT, we employed proteomic analysis based on the identification of differentially expressed proteins after exposure to repeated ECT in rat brains. The expression of proteins was visualized by silver stain after two-dimensional gel electrophoresis. Of 24 differentially expressed protein spots (p<0.05 by Student t-test), six different proteins from 7 spots were identified by matrix-assisted laser desorption/ionization time-of flight (MALDI-TOF)/mass spectrometry. Among the identified proteins, there were five dominantly expressed proteins in the ECT-treated rat brain tissues (p<0.05); S100 protein beta chain, 14-3-3 protein zeta/delta, similar to ubiquitin-like 1 (sentrin) activating enzyme subunit 1, suppressor of G2 allele of SKP1 homolog, and phosphatidylinositol transfer protein alpha. The expression of only one protein, ACY1 protein, was repressed (p<0.05). These findings likely serve for a better understanding of mechanisms involved in the therapeutic effects of ECT

    Identification of MYC as an antinecroptotic protein that stifles RIPK1-RIPK3 complex formation

    Get PDF
    The underlying mechanism of necroptosis in relation to cancer is still unclear. Here, MYC, a potent oncogene, is an antinecroptotic factor that directly suppresses the formation of the RIPK1-RIPK3 complex. Gene set enrichment analyses reveal that the MYC pathway is the most prominently down-regulated signaling pathway during necroptosis. Depletion or deletion of MYC promotes the RIPK1-RIPK3 interaction, thereby stabilizing the RIPK1 and RIPK3 proteins and facilitating necroptosis. Interestingly, MYC binds to RIPK3 in the cytoplasm and inhibits the interaction between RIPK1 and RIPK3 in vitro. Furthermore, MYC-nick, a truncated form that is mainly localized in the cytoplasm, prevented TNF-induced necroptosis. Finally, down-regulation of MYC enhances necroptosis in leukemia cells and suppresses tumor growth in a xenograft model upon treatment with birinapant and emricasan. MYC-mediated suppression of necroptosis is a mechanism of necroptosis resistance in cancer, and approaches targeting MYC to induce necroptosis represent an attractive therapeutic strategy for cancer

    Identification of Proteins Differentially Expressed in the Conventional Renal Cell Carcinoma by Proteomic Analysis

    Get PDF
    Renal cell carcinoma (RCC) is one of the most malignant tumors in urology, and due to its insidious onset patients frequently have advanced disease at the time of clinical presentation. Thus, early detection is crucial in management of RCC. To identify tumor specific proteins of RCC, we employed proteomic analysis. We prepared proteins from conventional RCC and the corresponding normal kidney tissues from seven patients with conventional RCC. The expression of proteins was determined by silver stain after two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The overall protein expression patterns in the RCC and the normal kidney tissues were quite similar except some areas. Of 66 differentially expressed protein spots (p<0.05 by Student t-test), 8 different proteins from 11 spots were identified by MALDI-TOF-MS. The expression of the following proteins was repressed (p<0.05); aminoacylase-1, enoyl-CoA hydratase, aldehyde reductase, tropomyosin α-4 chain, agmatinase and ketohexokinase. Two proteins, vimentin and α-1 antitrypsin precursor, were dominantly expressed in RCC (p<0.05)

    Social media use, body image, and psychological well-being: A cross-cultural comparison of korea and the united states

    No full text
    This study examined the relationships among social media use for information, self-status seeking and socializing, body image, self-esteem, and psychological well-being, and some cultural effects moderating these relationships. Americans (n = 502) and Koreans (n = 518) completed an online survey. The main findings showed that (a) social media use for information about body image is negatively related to body satisfaction in the United States and Korea, while social media use for self-status seeking regarding body image is positively related to body satisfaction only in Korea; and (b) body satisfaction has direct and indirect positive effects on psychological well-being manifested in similar ways in the United States and Korea. Implications and future research directions are discussed. © 2014 Copyright Taylor &amp; Francis Group, LLC.FALS

    PVR (CD155) Expression as a Potential Prognostic Marker in Multiple Myeloma

    No full text
    Poliovirus receptor (PVR, CD155) is upregulated during tumor progression, and PVR expression is associated with poor prognosis in cancer patients; however, prognostic implications for PVR in multiple myeloma (MM) have not been investigated. PVR plays an immunomodulatory role by interacting with CD226, CD96, and TIGIT. TIGIT is a checkpoint inhibitory receptor that can limit adaptive and innate immunity, and it binds to PVR with the highest affinity. We used immunohistochemistry, ELISA, qPCR, and flow cytometry to investigate the role of PVR in MM. PVR was highly expressed in patients with MM, and membrane PVR expression showed a significant correlation with soluble PVR levels. PVR expression was significantly associated with the Revised-International Staging System stage, presence of extramedullary plasmacytoma and bone lesion, percentage of bone marrow plasma cells (BMPCs), and &beta;2-microglobulin levels, suggesting a possible role in advanced stages and metastasis. Furthermore, TIGIT expression was significantly correlated with the percentage of BMPCs. Patients with high PVR expression had significantly shorter overall and progression-free survival, and PVR expression was identified as an independent prognostic factor for poor MM survival. These findings indicate that PVR expression is associated with MM stage and poor prognosis, and is a potential prognostic marker for MM

    Exploring the Fibrin(ogen)olytic, Anticoagulant, and Antithrombotic Activities of Natural Cysteine Protease (Ficin) with the κ-Carrageenan-Induced Rat Tail Thrombosis Model

    No full text
    Although fibrinolytic enzymes and thrombolytic agents help in cardiovascular disease treatment, those currently available have several side effects. This warrants the search for safer alternatives. Several natural cysteine protease preparations are used in traditional medicine to improve platelet aggregation and thrombosis-related diseases. Hence, this study aimed to investigate the effect of ficin, a natural cysteine protease, on fibrin(ogen) and blood coagulation. The optimal pH (pH 7) and temperature (37 °C) for proteolytic activity were determined using the azocasein method. Fibrinogen action and fibrinolytic activity were measured both electrophoretically and by the fibrin plate assay. The effect of ficin on blood coagulation was studied by conventional coagulation tests: prothrombin time (PT), activated partial thromboplastin time (aPTT), blood clot lysis assay, and the κ-carrageenan thrombosis model. The Aα, Bβ, and γ bands of fibrinogen are readily cleaved by ficin, and we also observed a significant increase in PT and aPTT. Further, the mean length of the infarcted regions in the tails of Sprague–Dawley rats was shorter in rats administered 10 U/mL of ficin than in control rats. These findings suggest that natural cysteine protease, ficin contains novel fibrin and fibrinogenolytic enzymes and can be used for preventing and/or treating thrombosis-associated cardiovascular disorders

    Streamlined DNA-encoded small molecule library screening and validation for the discovery of novel chemotypes targeting BET proteins

    No full text
    Targeting aberrant epigenetic programs that drive tumorigenesis is a promising approach to cancer therapy. DNA-encoded library (DEL) screening is a core platform technology increasingly used to identify drugs that bind to protein targets. Here, we use DEL screening against bromodomain and extra-terminal motif (BET) proteins to identify inhibitors with new chemotypes, and successfully identified BBC1115 as a selective BET inhibitor. While BBC1115 does not structurally resemble OTX-015, a clinically active pan-BET inhibitor, our intensive biological characterization revealed that BBC1115 binds to BET proteins, including BRD4, and suppresses aberrant cell fate programs. Phenotypically, BBC1115-mediated BET inhibition impaired proliferation in acute myeloid leukemia, pancreatic, colorectal, and ovarian cancer cells in vitro. Moreover, intravenous administration of BBC1115 inhibited subcutaneous tumor xenograft growth with minimal toxicity and favorable pharmacokinetic properties in vivo. Since epigenetic regulations are ubiquitously distributed across normal and malignant cells, it will be critical to evaluate if BBC1115 affects normal cell function. Nonetheless, our study shows integrating DEL-based small-molecule compound screening and multi-step biological validation represents a reliable strategy to discover new chemotypes with selectivity, efficacy, and safety profiles for targeting proteins involved in epigenetic regulation in human malignancies

    Therapeutic Effect of Rumex japonicus Houtt. on DNCB-Induced Atopic Dermatitis-Like Skin Lesions in Balb/c Mice and Human Keratinocyte HaCaT Cells

    No full text
    Rumex japonicus Houtt. (RJ) is traditionally used in folk medicines to treat patients suffering from skin disease in Korea and other parts of East Asia. However, the beneficial effect of RJ extract on atopic dermatitis (AD) has not been thoroughly examined. Therefore, this study aimed to investigate the anti-inflammatory effects of RJ on AD in vitro and in vivo. Treatment with RJ inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) as well as the activation of nuclear factor-kappa B (NF-&kappa;B) in tumor necrosis factor-&alpha; (TNF-&alpha;) stimulated in HaCaT cells. The five-week-old Balb/c mice were used as an AD-like mouse model by treating them with 1-chloro-2, 4-dinitrobenzene (DNCB). Topical administration of RJ to DNCB-treated mice significantly reduced clinical dermatitis severity, epidermal thickness, and decreased mast cell and eosinophil infiltration into skin and ear tissue. These results suggest that RJ inhibits the development of AD-like skin lesions by regulating the skin inflammation responses in HaCaT cells and Balb/c mice. Thus, RJ may be a potential therapeutic agent for AD
    corecore