122 research outputs found

    The involvement of Eph–Ephrin signaling in tissue separation and convergence during Xenopus gastrulation movements

    Get PDF
    AbstractIn Xenopus gastrulation, the involuting mesodermal and non-involuting ectodermal cells remain separated from each other, undergoing convergent extension. Here, we show that Eph–ephrin signaling is crucial for the tissue separation and convergence during gastrulation. The loss of EphA4 function results in aberrant gastrulation movements, which are due to selective inhibition of tissue constriction and separation. At the cellular levels, knockdown of EphA4 impairs polarization and migratory activity of gastrulating cells but not specification of their fates. Importantly, rescue experiments demonstrate that EphA4 controls tissue separation via RhoA GTPase in parallel to Fz7 and PAPC signaling. In addition, we show that EphA4 and its putative ligand, ephrin-A1 are expressed in a complementary manner in the involuting mesodermal and non-involuting ectodermal layers of early gastrulae, respectively. Depletion of ephrin-A1 also abrogates tissue separation behaviors. Therefore, these results suggest that Eph receptor and its ephrin ligand might mediate repulsive interaction for tissue separation and convergence during early Xenopus gastrulation movements

    Potential Usefulness of Streptococcus pneumoniae

    Get PDF
    The secretion of extracellular membrane vesicles (EMVs) is a common phenomenon that occurs in archaea, bacteria, and mammalian cells. The EMVs of bacteria play important roles in their virulence, biogenesis mechanisms, and host cell interactions. Bacterial EMVs have recently become the focus of attention because of their potential as highly effective vaccines that cause few side effects. Here, we isolated the EMVs of Streptococcus pneumoniae and examined their potential as new vaccine candidates. Although the S. pneumoniae bacteria were highly pathogenic in a mouse model, the EMVs purified from these bacteria showed low pathological activity both in cell culture and in mice. When mice were injected intraperitoneally with S. pneumoniae EMVs and then challenged, they were protected from both the homologous strain and another pathogenic serotype of S. pneumoniae. We also identified a number of proteins that may have immunogenic activity and may be responsible for the immune responses by the hosts. These results suggest that S. pneumoniae EMVs or their individual immunogenic antigens may be useful as new vaccine agents

    Isolation and Characterization of a Defensin-Like Peptide (Coprisin) from the Dung Beetle, Copris tripartitus

    Get PDF
    The antibacterial activity of immune-related peptides, identified by a differential gene expression analysis, was investigated to suggest novel antibacterial peptides. A cDNA encoding a defensin-like peptide, Coprisin, was isolated from bacteria-immunized dung beetle, Copris tripartitus, by using differential dot blot hybridization. Northern blot analysis showed that Coprisin mRNA was up-regulated from 4 hours after bacteria injection and its expression level was reached a peak at 16 hours. The deduced amino acid sequence of Coprisin was composed of 80 amino acids with a predicted molecular weight of 8.6 kDa and a pI of 8.7. The amino acid sequence of mature Coprisin was found to be 79.1% and 67.4% identical to those of defensin-like peptides of Anomala cuprea and Allomyrina dichotoma, respectively. We also investigated active sequences of Coprisin by using amino acid modification. The result showed that the 9-mer peptide, LLCIALRKK-NH2, exhibited potent antibacterial activities against Escherichia coli and Staphylococcus aureus

    Allopurinol Protects against Ischemia/Reperfusion-Induced Injury in Rat Urinary Bladders

    Get PDF
    Bladder ischemia-reperfusion (I/R) injury results in the generation of reactive oxygen species (ROS) and markedly elevates the risk of lower urinary tract symptoms (LUTS). Allopurinol is an inhibitor of xanthine oxidase (XO) and thus can serve as an antioxidant that reduces oxidative stress. Here, a rat model was used to assess the ability of allopurinol treatment to ameliorate the deleterious effects of urinary bladder I/R injury. I/R injury reduced the in vitro contractile responses of longitudinal bladder strips, elevated XO activity in the plasma and bladder tissue, increased the bladder levels of tumor necrosis factor-α (TNF-α), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase, reduced the bladder levels of extracellular regulated kinase (ERK), and decreased and increased the bladder levels of Bcl-2 and Bax, respectively. I/R injury also elevated lipid peroxidation in the bladder. Allopurinol treatment in the I/R injury was generated significantly ameliorating all I/R-induced changes. Moreover, an in situ fluorohistological approach also showed that allopurinol reduces the generation of intracellular superoxides enlarged by I/R injury. Together, the beneficial effects of allopurinol reducing ROS production may be mediated by normalizing the activity of the ERK, JNK, and Bax/Bcl-2 pathways and by controlling TNF-α expression

    Vasorelaxing Activity of Ulmus davidiana Ethanol Extracts in Rats: Activation of Endothelial Nitric Oxide Synthase

    Get PDF
    Ulmus davidiana var. japonica Rehder (Urticales: Ulmaceae) (UD) is a tree widespread in northeast Asia. It is traditionally used for anticancer and anti-inflammatory therapy. The present study investigated the effect of an ethanol extract of UD on vascular tension and its underlying mechanism in rats. The dried root bark of UD was ground and extracted with 80% ethanol. The prepared UD extract was used in further analysis. The effect of UD on the cell viability, vasoreactivity and hemodynamics were investigated using propidium iodide staining in cultured cells, isometric tension recording and blood pressure analysis, respectively. Low dose of UD (10~100µg/ml) did not affect endothelial cell viability, but high dose of UD reduced cell viability. UD induced vasorelaxation in the range of 0.1~10µg/ml with an ED50 value of 2µg/ml. UD-induced vasorelaxation was completely abolished by removal of the endothelium or by pre-treatment with L-NAME, an inhibitor of nitric oxide synthase. UD inhibited calcium influx induced by phenylephrine and high K+ and also completely abolished the effect of L-NAME. Intravenous injection of UD extracts (10~100 mg/kg) decreased arterial and ventricular pressure in a dose-dependent manner. Moreover, UD extracts reduced the ventricular contractility (+dP/dt) in anesthetized rats. However, UD-induced hypotensive actions were minimized in L-NAME-treated rats. Taken together, out results showed that UD induced vasorelaxation and has antihypertensive properties, which may be due the activation of nitric oxide synthase in endothelium
    corecore