302 research outputs found

    Analysis of Long-Range Transport of Carbon Dioxide and Its High Concentration Events over East Asian Region Using GOSAT Data and GEOS-Chem Modeling

    Get PDF
    This study aims to evaluate the long-range transport of CO2 in East Asian region, using concentration data in a surface measurement site (Gosan Station), column averaged concentration data of satellite-borne instrument (GOSAT), and GEOS-Chem modeling results for the period of June 2009 to May 2011. We perform a validation of the data from GOSAT and GEOS-Chem with total column observations (TCCON). The analysis of the long-range transport and high concentration (HC) events using surface/satellite observations and modeling results is conducted. During the HC events, the concentrations in CO2 and other air pollutants such as SO2 and CO are higher than that of all episodes. It means that CO2, known as a globally well-mixed gas, may also act as a fingerprint of human activity with unique regional characteristics like other air pollutants. This comprehensive analysis, in particular with GOSAT CO2 observation data, shows that CO2 plume with high concentration can be long-range transported with 1-2 days' duration with regional scale. We can find out with GEOS-Chem tagging simulation that more than 45% of the elevated CO2 concentration over central/eastern China, Korea, and Japan on high concentration days can be explained by emission sources of East Asia mainland.open0

    Sapovirus translation requires an interaction between VPg and the cap binding protein eIF4E.

    Get PDF
    UNLABELLED: Sapoviruses of the Caliciviridae family of small RNA viruses are emerging pathogens that cause gastroenteritis in humans and animals. Molecular studies on human sapovirus have been hampered due to the lack of a cell culture system. In contrast, porcine sapovirus (PSaV) can be grown in cell culture, making it a suitable model for understanding the infectious cycle of sapoviruses and the related enteric caliciviruses. Caliciviruses are known to use a novel mechanism of protein synthesis that relies on the interaction of cellular translation initiation factors with the virus genome-encoded viral protein genome (VPg) protein, which is covalently linked to the 5' end of the viral genome. Using PSaV as a representative member of the Sapovirus genus, we characterized the role of the viral VPg protein in sapovirus translation. As observed for other caliciviruses, the PSaV genome was found to be covalently linked to VPg, and this linkage was required for the translation and the infectivity of viral RNA. The PSaV VPg protein was associated with the 4F subunit of the eukaryotic translation initiation factor (eIF4F) complex in infected cells and bound directly to the eIF4E protein. As has been previously demonstrated for feline calicivirus, a member of the Vesivirus genus, PSaV translation required eIF4E and the interaction between eIF4E and eIF4G. Overall, our study provides new insights into the novel mechanism of sapovirus translation, suggesting that sapovirus VPg can hijack the cellular translation initiation mechanism by recruiting the eIF4F complex through a direct eIF4E interaction. IMPORTANCE: Sapoviruses, which are members of the Caliciviridae family, are one of the causative agents of viral gastroenteritis in humans. However, human sapovirus remains noncultivable in cell culture, hampering the ability to characterize the virus infectious cycle. Here, we show that the VPg protein from porcine sapovirus, the only cultivatable sapovirus, is essential for viral translation and functions via a direct interaction with the cellular translation initiation factor eIF4E. This work provides new insights into the novel protein-primed mechanism of calicivirus VPg-dependent translation initiation.This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (NRF-2014R1A2A2A01004292), and by the Wellcome Trust (Ref: WT097997MA). IG is a Wellcome senior fellow. The authors would like to thank Professor Jeong-Sun Kim for providing reagents and critical input into the project.This is the accepted manuscript version of the article. The final version is available from ASM at http://jvi.asm.org/content/early/2014/08/18/JVI.01650-14.abstract

    MGOS: A library for molecular geometry and its operating system

    Get PDF
    The geometry of atomic arrangement underpins the structural understanding of molecules in many fields. However, no general framework of mathematical/computational theory for the geometry of atomic arrangement exists. Here we present "Molecular Geometry (MG)'' as a theoretical framework accompanied by "MG Operating System (MGOS)'' which consists of callable functions implementing the MG theory. MG allows researchers to model complicated molecular structure problems in terms of elementary yet standard notions of volume, area, etc. and MGOS frees them from the hard and tedious task of developing/implementing geometric algorithms so that they can focus more on their primary research issues. MG facilitates simpler modeling of molecular structure problems; MGOS functions can be conveniently embedded in application programs for the efficient and accurate solution of geometric queries involving atomic arrangements. The use of MGOS in problems involving spherical entities is akin to the use of math libraries in general purpose programming languages in science and engineering. (C) 2019 The Author(s). Published by Elsevier B.V

    A 1.35GHz All-Digital Fractional-N PLL with Adaptive Loop Gain Controller and Fractional Divider

    Get PDF
    A 1.35GHz all-digital phase-locked loop (ADPLL) with an adaptively controlled loop filter and a 1/3rd-resolution fractional divider is presented. The adaptive loop gain controller (ALGC) effectively reduces the nonlinear characteristics of the bang-bang phase-frequency detector (BBPFD). The fractional divider partially compensates for the input phase error which is caused by the fractional-N frequency synthesis operation. A prototype ADPLL using a BBPFD with a dead zone free retimer, an ALGC, and a fractional divider is fabricated in 0.13m CMOS. The core occupies 0.19mm2 and consumes 13.7mW from a 1.2V supply. The measured RMS jitter was 4.17ps at a 1.35GHz clock output

    Microspinning: Local Surface Mixing via Rotation of Magnetic Microparticles for Efficient Small-Volume Bioassays

    Get PDF
    The need for high-throughput screening has led to the miniaturization of the reaction volume of the chamber in bioassays. As the reactor gets smaller, surface tension dominates the gravitational or inertial force, and mixing efficiency decreases in small-scale reactions. Because passive mixing by simple diffusion in tens of microliter-scale volumes takes a long time, active mixing is needed. Here, we report an efficient micromixing method using magnetically rotating microparticles with patterned magnetization induced by magnetic nanoparticle chains. Because the microparticles have magnetization patterning due to fabrication with magnetic nanoparticle chains, the microparticles can rotate along the external rotating magnetic field, causing micromixing. We validated the reaction efficiency by comparing this micromixing method with other mixing methods such as simple diffusion and the use of a rocking shaker at various working volumes. This method has the potential to be widely utilized in suspension assay technology as an efficient mixing strategy

    Full-length genomic analysis of korean porcine sapelovirus strains.

    Get PDF
    Porcine sapelovirus (PSV), a species of the genus Sapelovirus within the family Picornaviridae, is associated with diarrhea, pneumonia, severe neurological disorders, and reproductive failure in pigs. However, the structural features of the complete PSV genome remain largely unknown. To analyze the structural features of PSV genomes, the full-length nucleotide sequences of three Korean PSV strains were determined and analyzed using bioinformatic techniques in comparison with other known PSV strains. The Korean PSV genomes ranged from 7,542 to 7,566 nucleotides excluding the 3' poly(A) tail, and showed the typical picornavirus genome organization; 5'untranslated region (UTR)-L-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-3C-3D-3'UTR. Three distinct cis-active RNA elements, the internal ribosome entry site (IRES) in the 5'UTR, a cis-replication element (CRE) in the 2C coding region and 3'UTR were identified and their structures were predicted. Interestingly, the structural features of the CRE and 3'UTR were different between PSV strains. The availability of these first complete genome sequences for PSV strains will facilitate future investigations of the molecular pathogenesis and evolutionary characteristics of PSV
    corecore