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Abstract

Porcine sapelovirus (PSV), a species of the genus Sapelovirus within the family Picornaviridae, is associated with diarrhea,
pneumonia, severe neurological disorders, and reproductive failure in pigs. However, the structural features of the complete
PSV genome remain largely unknown. To analyze the structural features of PSV genomes, the full-length nucleotide
sequences of three Korean PSV strains were determined and analyzed using bioinformatic techniques in comparison with
other known PSV strains. The Korean PSV genomes ranged from 7,542 to 7,566 nucleotides excluding the 39 poly(A) tail, and
showed the typical picornavirus genome organization; 59untranslated region (UTR)-L-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-3C-
3D-39UTR. Three distinct cis-active RNA elements, the internal ribosome entry site (IRES) in the 59UTR, a cis-replication
element (CRE) in the 2C coding region and 39UTR were identified and their structures were predicted. Interestingly, the
structural features of the CRE and 39UTR were different between PSV strains. The availability of these first complete genome
sequences for PSV strains will facilitate future investigations of the molecular pathogenesis and evolutionary characteristics
of PSV.
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Introduction

Picornaviruses are a family of positive-sense single stranded

RNA viruses within the order Picornavirales [1]. They can cause

intestinal, respiratory, neurological, cardiac, hepatic, mucocuta-

neous, and systemic diseases of varying severity in humans and

animals [2]. Although different picornaviruses show various

degrees of relatedness, all picornaviruses share a similar genomic

organization, which consists of a covalently linked 59 terminal

protein called VPg (Viral Protein genome-linked), a 59 untrans-

lated region (UTR), a large open reading frame (ORF), a 39 UTR

and a poly(A) tail of variable length [2,3]. The genomic RNA of

picornaviruses harbor several distinct cis-active RNA elements

which are required for viral RNA replication; an internal ribosome

entry site (IRES) in the 59UTR, a cis-replication element (CRE)

within the ORF [3–6] or the 59 UTR [7], the 39 UTR, and the 39

poly(A) tail [3]. Currently, five different types of IRES element [8]

that direct cap-independent translation initiation on the viral RNA

to produce the polyprotein have been identified from the primary

sequence, secondary structure, location of the initiation codon and

activity in different cell types [9,10]. In most picornaviruses, the

polyprotein encoded by the ORF is cleaved into four structural

viral particle proteins (VP4, VP2, VP3 and VP1) and seven non-

structural proteins (2A, 2B, 2C, 3A, 3B, 3C and 3D). In addition,

the members of the genera Cardiovirus, Aphthovirus, Erbovirus,
Kobuvirus, Teschovirus, Senecavirus and Sapelovirus possess a

leader (L) protein at the N-terminus of polyprotein [11].

Although simian type 2 picornaviruses (SV-2-like viruses) and

porcine enterovirus 8 (PEV-8) were once classified in the genus

Enterovirus, SV-2-like viruses and PEV-8 along with duck

picornavirus TW90A have an L protein at the N-terminus of

the polyprotein that is lacking in the enteroviruses [12–14].

Moreover, those viruses contain distinct 2A proteins from those of

the Enterovirus genus, and a highly divergent 59UTR with a type

IV IRES [12,14–16]. Due to these particular genetic properties,

these simian, avian, and porcine picornaviruses are now assigned

as members of a new picornavirus genus, Sapelovirus [12–

15,17,18].

PSV infections have been associated with a wide spectrum of

symptoms ranging from asymptomatic infection to clinical signs

including diarrhea, pneumonia, polioencephalomyelitis, and

reproductive disorders [19–20]. Although PSVs can be important

pathogens because of their wide distribution and high prevalence

[21–25], the near-complete genomic sequences of only three PSV

strains have been reported previously; one from the U.K. (V13
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strain) and two from China (csh and YC2011 strains). This

prompted us to characterize the full-length genetic properties of

Korean PSV strains in comparison with those of other known PSV

strains.

During an epidemiological study on PSV infections in the fecal

samples of piglets with diarrhea in South Korea, three PSV strains

were isolated. These Korean PSV strains were characterized using

an immunofluorescence assay (IFA) with a monoclonal antibody

specific for a PSV capsid protein, RT-PCR assay with primer pair

specific for the PSV VP1 coding region and transmission electron

microscopy. Furthermore, bioinformatic techniques were em-

ployed to analyze the complete viral genomes of the three newly

isolated strains in comparison with the other known PSV strains.

Materials and Methods

Origin of virus strains
The diarrheic fecal samples, collected from piglets in 45

different herds in South Korea during 2004–2007, were screened

for PSV infections using RT-PCR and nested-PCR assays with

primer pairs specific for the PSV VP1 coding region [26]. Among

the PSV-positive fecal samples, three fecal samples which were

strongly positive for PSV by RT-PCR were used to isolate PSVs

using a porcine kidney cell line [22], LLC-PK. In brief, the RT-

PCR positive fecal samples were diluted 10-times with 0.01 M

phosphate-buffered saline (PBS, pH 7), vortexed for 30 s and

centrifuged at 12006g for 20 min. The supernatants were filtered

through 0.2-mm syringe filters. Filtered supernatants were serially

diluted 10-times with Eagle’s minimal essential medium (EMEM)

containing 1% antibiotics (Penicillin, Streptomycin, and Ampho-

tericin B) and 1% NaHCO3, and used to infect cells in 6-well

plates. The suspensions were absorbed for 1 h with occasional

rocking, and EMEM containing 1% antibiotics and 1% NaHCO3

was added. The cultures were incubated for 3 to 4 days at 37uC in

a 5% CO2 atmosphere and examined daily for cytopathic effects

(CPE). Isolated PSVs were cloned by triple plaque purification.

The PSV strains (KS04105, KS05151 and KS055217) were

passaged eight times in LLC-PK cells, including isolation,

adaptation, and triple plaque purification. The isolated viruses

were confirmed as PSVs by an IFA, RT-PCR and transmission

electron microscopy (TEM) assays, as described below.

Transmission electron microscopy (TEM)
LLC-PK cells infected with each of the above strains and

showing over 70% CPE were frozen and thawed thrice, and

centrifuged at 2,0006g for 30 min. To obtain purified virus, each

supernatant was ultra-centrifuged at 200,0006g for 5 h at 4uC in a

S58A-0015 rotor (Hitachi, Tokyo, Japan). The resulting pellets

were resuspended in 40 ml of water and mixed with an equal

volume of 2% (w/v) sodium phosphotungstic acid at pH 7.0. The

samples were placed onto a formvar grid (Electron Microscopy

Sciences, Hatfield, USA) for 5 min, and then excess liquid was

removed by filter paper. The samples were examined using a High

Resolution Transmission Electron Microscope (Hitachi) for the

determination of purity of virus stock at Gwangju Center of Korea

Basic Science Institute.

Immunofluorescence assay (IFA)
To characterize the PSV strains, the IFA was performed with a

153/5B5 (IgG2a) monoclonal antibody specific for the PSV capsid

protein (kindly provided by Dr. M Dauber, Friedrich-Loeffler-

Institut, Greifswald-Insel Riems, Germany). Briefly, LLC-PK cells

were infected with each strain, incubated for 18 h as above, fixed

in 80% acetone for 5 min at 4uC, and allowed to air dry. Slides

were washed thrice with PBS (pH 7.2), and incubated overnight at

4uC using a 1:40 dilution of monoclonal antibody specific for PSV

capsid protein diluted in PBS (pH 7.2). Slides were washed thrice

with PBS (pH 7.2), and incubated with FITC-conjugated goat

anti-mouse IgG antibody (Santa Cruz biotechnology, Santa Cruz,

USA) diluted 1:100 in PBS (pH 7.2) for 1 h at room temperature.

After washing twice with PBS (pH 7.2), slides were stained with

49,6-diamidino-2-phenylindole (DAPI) (Invitrogen, Lohne, Ger-

many), and examined using a LSM confocal scanning microscope

(Carl Zeiss, Jena, Germany).

RNA extraction and RT-PCR
Total RNA was extracted from the lysates of LLC-PK cells

infected with each strain using the AccuPrep Viral RNA

extraction kit (Bioneer, Daejeon, Korea) according to the

manufacturer’s instructions. To detect and amplify PSV RNA,

RT-PCR with a primer pair specific for the PSV VP1 coding

sequence (Table S1 in File S1) was performed. To characterize the

complete full-length genome sequences of each strain, ten primer

sets (Table S1 in File S1) were designed to amplify the complete

ORF sequences of each PSV strain based on the published

genomic sequences of the PSV-V13 (GenBank ID: NC_003987),

csh (GenBank ID: HQ875059) and YC2011 strains (GenBank ID:

JX286666). Standard one-step RT-PCR assays were performed as

previously described [25].

59 and 39 cDNA syntheses
cDNA of each strain was synthesized by the SMARTer Rapid

Amplification of cDNA Ends (RACE) cDNA amplification kit

(Clontech, Mountain View, USA) according to the manufacturer’s

instructions. For generating 39 RACE-ready cDNA, 3.75 ml of the

poly(A) tailed RNA and 1 ml of 39-cDNA Synthesis (CDS) Primer

A were mixed and heated to 72uC for 3 min, followed by cooling

to 42uC for 2 min using a thermo cycler. For generating 59

RACE-ready cDNA, 3.75 ml of total RNA was mixed with 1 ml of

59-CDS primer A, incubated at 72uC for 3 min, and cooled at

22uC for 2 min. The denatured RNA for each 39 and 59 cDNA

generation was mixed with a reaction mixture composed of 2 ml

56First-Strand Buffer, 1 ml dithiothreitol (DTT) (20 mM), 1 ml

dNTP mix (10 mM), 0.25 ml RNase inhibitor (40 U/ml), and 1 ml

SMARTScriber Reverse Transcriptase (100 U). Samples were

incubated at 42uC for 90 min and heated at 70uC for 10 min. The

synthesized cDNAs were diluted with 7 ml of Tricine-EDTA buffer

and used for RACE PCR.

RACE PCR, cloning and sequencing
For the generation of 39 and 59 RACE PCR reactions,

Advantage 2 Polymerase Mix (Clontech) was used; 5 ml of 39/59-

RACE-Ready cDNA, 32 ml of PCR-grade water, 5 ml of

106Advantage 2 PCR Buffer, 1 ml dNTP Mix (10 mM), 5 ml

Universal Primer Mix (10 X), 1 ml of 50 pmol/ml gene-specific

primer (GSP) for 39 and 59 RACE (Table S1 in File S1), and 1 ml

of 506Advantage 2 Polymerase Mix. The reaction was performed

with the following thermal cycling program: 5 cycles of 94uC or

94.5uC for 30 sec and 72uC for 2 min or 3 min; 5 three-step cycles

of 94uC or 94.5uC for 30 sec, 65uC (applied melting temperature

of GSP) for 30 sec, and 72uC for 2 min or 3 min; 25 three-step

cycles of 94uC or 94.5uC for 30 sec, 60uC (applied lowered Tm

values of GSP by 3uC to 5uC) for 30 sec, and 72uC for 2 min or

3 min.

The RACE PCR products were separated on a 1.5% (m/v)

agarose gel; the bands were excised and purified using a Purelink

Quick Gel Extraction kit (Invitrogen). The products were ligated

into TA Vector Systems (Enzynomics, Daejeon, Korea) and
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introduced into DH5a competent cells. Individual colonies were

grown and plasmid was purified using Hybrid-Q Plasmid

(GeneAll, Seoul, Korea). Sequencing was performed using an

ABI System 3700 automated DNA sequencer (Applied Biosystems,

Foster, USA).

Full-length genomic characterization and secondary
structure prediction

To generate complete nucleotide sequences for each PSV strain,

both 59 and 39 end sequences of each strain were assembled with

the nucleotide sequences of the internal ORF sequences. The

complete full-length genomic and individual protein coding

sequences of three PSV strains were compared with those of the

other known PSV strains (Table S2 in File S1) using the DNA

Basic module (DNAsis MAX, Alameda, USA). Phylogenetic

analyses based on nucleotide and amino acid alignments were

performed using the neighbor-joining method with 1000 bootstrap

replicates and UPGMA Molecular Evolutionary Genetics Analysis

(MEGA version 5.2) employing pair-wise distance comparisons

[27]. Sequence identity calculations for the three PSV strains with

those of the other known PSV strains were performed using the

homology and distance matrices method of DNAMAN version 6.0

program (Lynnon, Vaudreuil, Canada). Secondary structure

elements in the PSV genomes were modeled using CLC Main

Workbench version 6.8.2 program (CLC bio, Katrinebjerg,

Denmark).

Ethics statement
No specific approval was needed since the fecal samples were

voluntarily submitted by the farms for pathogen screening in our

laboratory. No other specific permits were required for the

described field studies. The locations where we sampled are not

protected in any way. The field studies did not involve endangered

or protected animal species. Before beginning work on the study,

we contacted the farm owners and obtained their permission.

Results

Virus isolation and identification
Three Korean PSV strains were isolated from separate diarrhea

fecal samples originating from three different farms and plaque

purified. LLC-PK cells infected with each strain after 8 passages in

LLC-PK cells showed CPE at day 1 post-inoculation characterized

by shrinkage, rounding and detachment of cells (Figure 1A, 1B),

and displayed PSV-specific cytoplasmic fluorescence in the

indirect IFA using a monoclonal antibody against PSV capsid

protein (Figure 1A). RT-PCR assays with a primer pair specific for

the partial PSV VP1 coding region amplified a 636 bp amplicon

from LLC-PC cells infected with each strain (Figure S1C). By

transmission electron microscopy, negatively stained purified virus

particles of each strain appeared spherical with a diameter of

approximately 30 nm (Figure 1B). No other virus-like particles

were observed. These results identified the isolated viruses as

PSVs.

Genome organization
The complete nucleotide sequences of the whole genome of the

three Korean PSV strains were obtained and compared to the

previously determined PSV sequences. In picornavirus RNAs, the

two 59 terminal UU residues are derived from the uridylylation of

VPg to make VPg-pU-pU [28]. In the previously described PSV

sequences, however, the two 59 terminal residues were AC for the

Chinese csh and English V13 strains, and UA for the Chinese

YC2011 strain, suggestive of incomplete sequences. To obtain the

correct 59 terminal start residues, cDNA synthesis and then 59

RACE PCR with 59 RACE primer (Table S1 in File S1) were

performed. Using this approach, the 59 terminal residues were UU

and the 59 UTR length of three Korean strains was 25 nucleotides

longer than that of Chinese YC2011 strain (Table S3 in File S1)

[29]. In order to confirm this result, 59RACE PCR was performed

with another 59RACE PCR primer (Table S1 in File S1) and the

same 59 terminal nucleotide residues, UU, were also observed.

The length of the complete genomes of Korean PSV strains,

excluding the poly(A) tail, was from 7,542 (KS04105 and

KS055217) to 7,566 nucleotides (KS05151) (Table S3 in File

S1). These sequences contained a single large ORF whose lengths

were 6,966 nucleotides (strain V13; 2,322 amino acid polyprotein

precursor) to 6,993 nucleotides (strains csh, KS05151, YC2011;

2,331 amino acid polyprotein precursor) (Table S3 in File S1). The

predicted protease cleavage sites of the polyproteins, as determined

from alignments with other picornaviruses are shown in Table 1.

The polyprotein was predicted to be cleaved and processed into

twelve mature peptides: L-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-

3CPro-3DPol (Figure 2). The ORF sequence in the three Korean

PSV strains was flanked by 59 UTR which was 491 nucleotides

long and by a 39 UTR which was 82 nucleotides long (Table S3 in

File S1).

Molecular and phylogenetic analyses
The complete genome sequence, excluding the poly(A) tail, and

the polyprotein sequences of three Korean strains were compared

with those of other known PSVs and representative picornavirus

strains available in the GenBank database. The Korean PSV

strains showed high nucleotide (84.7%–94.0%) and deduced

amino acid (92.9%–98.3%) identities with the other PSV strains

(Table 2), but showed relatively low nucleotide and polyprotein

sequence identities with the avian and simian sapelovirus strains

(Table 2).

Each of the major functional units in the genome, including the

59 and 39 UTRs, the capsid coding region (P1) and the regions

encoding the non-structural proteins (P2 and P3) of PSVs, were

phylogenetically analyzed (Figure 3). Representative simian and

avian sapelovirus reference strains were included in each of the

trees. The 59 UTR sequences of three Korean PSV strains were in

the same cluster and were more closely related to the English

strain V13 than to the Chinese strains csh and YC2011

(Figure 3A). The 39 UTR sequences of five strains (KS04105,

KS055217, KS05151, V13, and YC2011) were 82 nucleotides

long while that of Chinese strain csh was 68 nucleotides in length,

possibly due to incomplete sequencing (Table S3 in File S1).

However, they were phylogenetically very close (Figure 3B).

The leader protein sequences of all PSV strains were 252

nucleotides (84 amino acids) in length (Table S3 in File S1) and

show high deduced amino acid identities (95.2–100%) (Table S4 in

File S1). The PSV leader polypeptide lacked the catalytic residue

motifs necessary for proteolytic activity and did not contain either

a zinc-finger motif [Cys2 His2-like fold group] in the leader amino

terminal region or a tyrosine-phosphorylation motif [KR]-x(2,3)-

[ED]-x(2,3)-Y].

The nucleotide and deduced amino acid sequences of the PSV

capsid region varied in length from 2430 to 2454 nucleotides

(encoding 810 to 818 amino acids, Table S3 in File S1). To

investigate the genetic relationships between the PSV strains,

pairwise sequence identities were calculated for the deduced

complete capsid protein sequences of all 6 PSV strains and for the

sequences of each of the mature capsid proteins, VP1-VP4 (Table

S4 in File S1). All PSV strains showed 88.4% to 97.7% nucleotide

identities in the complete capsid coding sequences (Table S4 in

Full-Length Genomic Analysis of Korean PSV
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File S1). The phylogenetic relationships are shown in Figure 3C.

The PSV strains had 85.6% to 98.2% nucleotide identities within

the VP1 coding sequences (Table S4 in File S1). The phylogenetic

analysis for the VP1 proteins among PSV strains is shown in

Figure 3D. The VP1 sequences of the KS05151, csh, and YC2011

strains encoded an additional 8 amino acids in comparison with

other strains (Table S3 in File S1).

The P2 region of all PSV strains was 1989 nucleotides (663

amino acids) in length and P3 was 2235–2238 nucleotides (745–

746 amino acids) long (Table S3 in File S1). Pairwise deduced

amino acid sequence identities of P2 and P3 regions were shown to

be very high, ranging from 94.1% to 99.5% and 95.9% to 99.0%,

respectively (Table S4 in File S1).

Analysis of the RNA structures within the 59UTR
As described above, the use of 59RACE allowed determination

of the complete 59UTR sequence of the Korean PSVs (some

491 nt in length); the 59 UTR of these strains was 25 nucleotides

longer than that of Chinese strain of PSV (YC2011). This allowed

prediction of the secondary structure elements within the PSV

59UTR (Figure 4). At the extreme 59 terminus were two stem-loop

structures, labelled domains Ia and Ib. The latter included two

smaller stem loop structures, labelled Ic and Id. The 59 UTR also

contained two other domains, labelled domain II and domain III.

These represent essential components of the IRES and are labelled

in the same manner as other type IV IRES elements (related to

that found in hepatitis C virus (HCV), the pestiviruses and certain

picornaviruses, e.g. porcine teschovirus) [9,30,31]. Domain III

Figure 1. Identification and morphology of the porcine sapelovirus (PSV). (A) Immunofluorescence analysis of the PSV infected LLC-PK cells
by laser confocal microscopy. The LLC-PK1 cells were incubated with mouse anti-153/5B5 monoclonal antibody, followed by staining with
fluorescein-conjugated goat anti-mouse IgG antibody (green fluorescence). The nuclei were visualized by staining with DAPI (blue fluorescence). (B)
Electron micrograph (EM) of cultured PSV strain KS05151. Virus pelleted by ultracentrifugation was stained with 1% phosphotungstic acid and
sprayed onto coated EM grids.
doi:10.1371/journal.pone.0107860.g001

Table 1. Location of putative cleavage sites in the porcine sapelovirus polyprotein.

Cleavage site Amino acid sequence Position of amino acid

1a 2b 3c

L/VP4 GNKPQ/GAYNH 84/85 84/85 84/85

VP4/VP2 GPSLK/APDKE 137/138 137/138 137/138

VP2/VP3 RQ/GFPVR 375/376 375/376 375/376

VP3/VP1 YQ/GD 609/610 609/610 609/610

VP1/2A AEQLa, b (ATQTc)/GPYE 902/903 894/895 894/895

2A/2B HDWVQ/GLGQV 1128/1129 1120/1121 1120/1121

2B/2C EPHKQ/GPSDW 1233/1234 1225/1226 1225/1226

2C/3A DAIFQ/GPVQ 1565/1566 1557/1558 1557/1558

3A/3B KQ/GAY 1665/1666 1657/1658 1657/1658

3B/3C KAVVQ/GPDME 1687/1688 1679/1680 1679/1680

3C/3D FVNKQ/GLITE 1869/1870 1861/1862 1861/1862

3D/ F/ 2331/ 2323/ 2322/

Letters in bold represent conserved amino acid residues.
aYC2011, KS05151 and csh strains.
bKS055217 and KS04105 strains.
cV13 strain.
doi:10.1371/journal.pone.0107860.t001
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contained multiple sub-domains including a pseudoknot (IIIf) and

highly conserved stem-loops IIId and IIIe which, by analogy to the

HCV IRES, interact directly with the 40S ribosomal subunit.

Analysis of 39UTR sequence
The PSV 39UTR was highly conserved. Based on the size of the

39UTR, the PSVs can be divided into a V13-like group (KS04105,

KS05151, KS055217, YC2011 and V13 strains) which was 82

nucleotides long and the csh strain that was 62 nucleotides long

(Figure 5A). Both of these sapelovirus subgroups possess two

common domains that can form a stem-loop structure (Domains X

and Y [Figure 5B–5D]). The V13-like group contained a third

stem loop region (termed domain Z [Figure 5B, 5C]), located

upstream of domain Y (Figure 5B, 5C). In the 3 Korean strains

and YC2011 strain, an interaction of 8 nucleotides between the

same sequence region within the loop of domain Z (nt 7485 to

7492 in the KS05151 strain) and the loop of domain X (nt 7549 to

7556 in the KS05151 strain), forming a loop-loop intramolecular

‘‘kissing’’ RNA interaction, appeared to be possible (Figure 5B).

The V13 strain had a potential interaction of 7 nucleotides

between the loops of domain Z (nt 7411 to 7416) and domain X

(nt 7475 to 7480), forming a similar intramolecular ‘‘kissing’’ RNA

interaction (Figure 5C). The csh-like group sequence was not

predicted to form a loop-loop intramolecular ‘‘kissing’’ RNA

interaction due to the lack of the domain Z (Figure 5A, 5D).

Identification of a cis-acting RNA element (CRE)
The CRE is an essential element in picornavirus RNA

replication [7,32–35]. These relatively short elements can be

located in different places within the genome; they act as the

template for the uridylylation of VPg to form VPg-pU-pU and

contain an essential motif AAAYA [36]. Analyses of the three

Korean sequences (KS04105, KS05151, KS055217) and other

known PSV strains including the Chinese (csh and YC2011) and

English (V13) strains revealed the presence of several AAACA

motifs in the genomes of these strains. As shown in Figure 6,

however, a stem-loop structure with an exposed loop containing

the AAACA motif was only found in the 2C coding sequence (i.e.,
nucleotide 4491 to 4550 in the genome of KS05151). This hairpin

loop included 16 nucleotides. Interestingly, the KS04015,

KS05105, KS055217 and YC2011 strains had two AAACA

motifs within this loop structure (Figure 6).

Discussion

We report here the isolation of three Korean PSV strains,

KS05151, KS04105 and KS055217 from porcine diarrhea

specimens. The Korean PSV strains were identified as PSV by

RT-PCR, IFA and TEM assays. The genome sequences of the

Korean PSV strains were determined and proved to be the first

complete genome sequences for PSVs. They have a genome

organization typical for members of the genera Cardiovirus,

Aphthovirus, Erbovirus, Kobuvirus, Teschovirus and Senecavirus
[11]. Moreover, these strains had distinct 2A proteins from those

of the Enterovirus genus and a 59 UTR with a type IV IRES

[12,14,15,37].

The 59 UTRs of picornaviruses are highly structured and

contain an IRES that directs RNA translation by internal

ribosome binding [8,9]. Picornavirus IRES are currently divided

into five distinct types by the primary sequence, secondary

structure, location of the initiation codon and activity in different

cell types [9,10]. In a previous study [16], the IRES elements of

PSV V13 strain and simian sapelovirus SV2 strain were found to

be related functionally and structurally to the type IV IRES

element from porcine teschovirus 1 and hepatitis C virus.

Comparative sequence analysis of the Korean PSV strains with

PSV V13 strain showed that the structural features of the IRES

elements were well conserved in all PSV species including the

Korean PSV strains but they lacked a domain IIIc [16].

At the 59 UTR terminus, enteroviruses and rhinoviruses contain

a cloverleaf structure which is involved in RNA replication [38]. In

order to identify whether PSV species have a cloverleaf RNA

structure at the 59UTR, the complete 59UTR needs to be known.

However, the sequences of the known PSV strains including the

English V13, and the Chinese csh and YC2011 strains lacked the

59 terminal UU residues, which were necessary for picornavirus

RNA replication [39]. Using 59 RACE, an additional 25

nucleotides including 59 terminal UU residues were identified

compared to the recently sequenced Chinese YC2011 strain [29].

Unlike enteroviruses and rhinoviruses [38], the Korean PSV

strains had no cloverleaf RNA structure at the 59UTR. However,

two conserved stem-loop motifs were present within the 59-

terminal 80 nucleotides (Figure 4). The role of these structures is

not known but they may be expected to play a role in RNA

replication analogous to the cloverleaf structure of the enterovi-

ruses [38,39]. Overall the 59UTRs of PSVs were quite short, for

example the poliovirus 59UTR is about 740 nucleotides in length

while the foot-and-mouth disease virus (FMDV) 59UTR is over

1300 nucleotides [40].

The picornaviruses that have a L protein preceding the capsid

region are members of the genera Cardiovirus, Aphthovirus,
Erbovirus, Kobuvirus, Teschovirus and Sapelovirus [41]. In

aphthoviruses and erboviruses, the L proteins are papain-like

cysteine proteinases that are able to cleave at their own carboxy-

terminus and also to induce the cleavage of the eukaryotic

initiation factor (eIF) 4G, leading to the shut-off of host-cell protein

synthesis [42,43]. The L protein of encephalomyocarditis virus (a

cardiovirus) binds zinc, is phosphorylated during viral infection,

and has been reported to affect the efficiency of genome

translation [41]. The properties of the sapelovirus L protein are

not known; it has neither the catalytic dyad (Cys and His),

conserved in a papain-like thiol protease found in FMDV L

protein [44], nor a putative zinc-binding motif, Cys-His-Cys-Cys,

Figure 2. Genome organization of the porcine sapelovirus (PSV). The open reading frames are flanked on either side by UTRs. The numbers
above or under each rectangle are the length of nucleotides or deduced amino acids. The length of VP1 and 3D regions are different among PSVs.
doi:10.1371/journal.pone.0107860.g002
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found in encephalomyocarditis virus [45]. Further studies are

required to address the function of PSV L protein.

In general, picornavirus 39 UTRs vary in length between 40 and

165 nucleotides. The length of the 39 UTR in PSV is 82

nucleotides (strain V13, YC2011, KS04105, KS05151 and

KS055217) although a shorter sequence (68 nucleotides) was

described for the csh strain [20]. In a previous report [12], PSV

strain V13 was predicted to include three stem-loop structures in

the region of the 39UTR using nine nucleotides of the terminal

part of the 3D coding region. In the present study, the Korean

viruses KS04105, KS05151 and KS055217 plus the Chinese

YC2011 strain each appear to have these 3 stem-loop structures

(X, Y and Z), but the csh strain showed only two stem-loop

structures (X and Y) since the sequence was shorter. The domain

Z, in which the stop codon (UGA) is located, is the most conserved

region of the 39UTR within PSVs, whereas domains Y and X were

considered more variable regions (Figure 5B, 5C), as they show

heterogeneity in both length and nucleotide sequence. The

differences between the 5 different PSV strains and the csh strain

appear attributable to an incomplete 39 terminal sequence for the

csh 39 UTR region. Moreover, five strains, except for the strain

csh, were predicted to have an intramolecular kissing RNA

interaction between the X and Z domains. Due to the lack of 39

terminal sequence of csh 39 UTR region, no intramolecular kissing

RNA interaction could be predicted (Fig. 5D). Interestingly, the

V13 strain showed intramolecular interaction of 7 nucleotides, but

the three Korean and one Chinese strains had intramolecular

interaction of 8 nucleotides. The 39 UTR plays an important role

in picornavirus replication. Serial passage of mutant viruses in

which such interactions were disrupted resulted in production of

revertants in which the tertiary kissing interaction was restored,

indicating the functional importance of the interaction in the

enterovirus 39UTR [46–50]. Further study is required to

determine whether these regions are important for PSV replication

using modifications of the relevant PSV nucleotide sequences.

A CRE of picornaviruses has been identified in six genera of

Picornaviridae family; Enterovirus [6,51], Rhinovirus [5], Cardi-
ovirus [52], Aphthovirus [7], Parechovirus [4], and Hepatovirus
[53]. However, no putative CRE has yet been reported for viruses

in the Sapelovirus, Kobuvirus, Erbovirus, Teschovirus, Avihepa-
tovirus, Senecavirus and Tremovirus genera. The location of the

CRE in the genomic RNA varies between the picornavirus genera.

It is located in the coding region for 2C in enteroviruses [6,36], for

VP1 in species B rhinoviruses [32], for VP2 in species C

rhinoviruses [38] and cardioviruses [52], for VP0 in parecho-

viruses [4] and for 3D of hepatoviruses [54]. In FMDV, the CRE
is located just upstream of the IRES [7,35]. In the present study, a

putative CRE was located in the 2C coding region of all PSV

Figure 3. Sequence comparisons and phylogenetic analysis of Korea porcine sapelovirus strains. The phylogenetic tree of 59

untranslated region (UTR) sequence (A), 39UTR sequence (B), P1 nucleotide sequence (C), VP1 nucleotide sequence (D), P2 nucleotide sequence (E),
and P3 nucleotide sequence (F) were constructed using the neighbor-joining method with 1,000 bootstrap replicates, and the branch length is
indicated at each branch node.
doi:10.1371/journal.pone.0107860.g003
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strains. Generally, the AAACA motif is located in the loop of

picornavirus CREs and the first and second A residues are

involved in providing a template for the addition of uridine onto

VPg [38,39,53,55,56]. In contrast to other known CREs, the PSV

strains had two copies of the AAACA motif within the sequence

CAAACATAATAAACAA. This indicated that one or both of

these AAACA motifs may be involved in being a template for the

addition of uridine onto VPg. Future functional analyses are

needed to identify whether one or both motifs are templates for the

uridylylation of VPg to make VPg-pU-pUOH.

In this study, we characterized the structural features of three

Korean PSV strains in comparison with the other known PSV

strains. All PSV strains showed the typical picornavirus genome

organization. We have identified putative RNA structures in the

Figure 4. Sequences and structural features of 59 untranslated region of the porcine sapelovirus KS05151 strain. At the extreme 59
terminus are two stem-loop structures, labelled domains Ia and Ib. Secondary stem-loops include two smaller stem loop structures labelled Ic and Id.
A secondary structure model for the domains II and III of the type IV internal ribosome entry site element is shown (this model is based on previously
published studies [9,29,30]).
doi:10.1371/journal.pone.0107860.g004
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Figure 5. Sequences and structural features of 39 untranslated region (UTR) of the porcine sapeloviruses. (A) The nucleotide sequences
of the 39 UTR were compared using the Clustal W methods. (B–D) Secondary and tertiary structures of 39 UTR of strains KS04105, KS05151, KS055217
and YC2011 (B), strain V13 (C), and strain csh (D) were predicted by the CLC program. Proposed tertiary interactions between the loops of X and Z
domains are shown by lines.
doi:10.1371/journal.pone.0107860.g005

Figure 6. Sequences and structural feature of porcine sapelovirus cis-replication element (CRE). The first and second AAACA motifs are
written in bold letter in the loop of the CRE.
doi:10.1371/journal.pone.0107860.g006
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59UTR and 39 UTR plus a CRE in the 2C coding sequence.

Interestingly, the structural features of the CRE in the 2C coding

sequence and of the 39UTR were different between the strains

circulating in the recent and past decades. These first complete

genome data for PSV (for the Korean PSV strains KS05151,

KS04105 and KS055217) will facilitate future investigations

concerning the molecular pathogenesis and evolutionary charac-

teristics of this virus.

Supporting Information

Figure S1 Phase contrast photomicrographs of control
and infected LLC-PK1 cells, and RT-PCR assay for
detecting porcine sapelovirus (PSV) VP1 coding region.
(A) Mock-inoculated control cells. (B) Cells at 1 day after infection

with Korean PSV strain KS05151. Note the shrinking and

rounding up of the infected cells. Microscope settings Ocular: 10;

Lens: 10X. Scale bar, 200 mm. (C) RT-PCR with primers specific

for part of the PSV VP1 coding region generated the expected

636 bp amplicons. M: size marker. N: mock-infected LLC-PK

cells. Lanes 1–3: KS04105, KS05151, and KS055217 strains.

(TIF)

File S1 Supplementary Tables. Table S1. Oligonucleotide

primers for amplifying and sequencing of porcine sapelovirus

strains. Table S2. Strains of picornaviruses and their GenBank

accession numbers used in this study. Table S3. The length of 59

untranslated region, each part of the open reading frame, 39

untranslated region and the complete genome excepting the

poly(A) tail. Table S4. Comparison of nucleotide/deduced amino

acid sequences between the porcine sapelovirus strains.

(DOC)
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