3,221 research outputs found

    Enhanced heterogeneity of rpoB in Mycobacterium tuberculosis found at low pH.

    No full text
    OBJECTIVES: The aim of this study was to gain an insight into the molecular mechanisms of the evolution of rifampicin resistance in response to controlled changes in the environment. METHODS: We determined the proportion of rpoB mutants in the chemostat culture and characterized the sequence of mutations found in the rifampicin resistance-determining region of rpoB in a steady-state chemostat at pH 7.0 and 6.2. RESULTS: The overall proportion of rpoB mutants of strain H37Rv remained constant for 37 days at pH 7.0, ranging between 3.6 x 10(-8) and 8.9 x 10(-8); however, the spectrum of mutations varied. The most commonly detected mutation, serine to leucine mutation at codon 531 (S531L), increased from 40% to 89%, while other mutations (S531W, H526Y, H526D, H526R, S522L and D516V) decreased over the 37 day sampling period. Changing the pH from 7.0 to 6.2 did not significantly alter the overall proportion of mutants, but resulted in a decrease in the percentage of strains harbouring S531L (from 89% to 50%) accompanied by an increase in the range of different mutations from 4 to 12. CONCLUSIONS: The data confirm that the fitness of strains with the S531L mutation is greater than that of strains containing other mutations. We also conclude that at low pH the environment is permissive for a wider spectrum of mutations, which may provide opportunities for a successful mutant to survive

    Native interface of the SAM domain polymer of TEL

    Get PDF
    BACKGROUND: TEL is a transcriptional repressor containing a SAM domain that forms a helical polymer. In a number of hematologic malignancies, chromosomal translocations lead to aberrant fusions of TEL-SAM to a variety of other proteins, including many tyrosine kinases. TEL-SAM polymerization results in constitutive activation of the tyrosine kinase domains to which it becomes fused, leading to cell transformation. Thus, inhibitors of TEL-SAM self-association could abrogate transformation in these cells. In previous work, we determined the structure of a mutant TEL-SAM polymer bearing a Val to Glu substitution in center of the subunit interface. It remained unclear how much the mutation affected the architecture of the polymer, however. RESULTS: Here we determine the structure of the native polymer interface. To accomplish this goal, we introduced mutations that block polymer extension, producing a heterodimer with a wild-type interface. We find that the structure of the wild-type polymer interface is quite similar to the mutant structure determined previously. With the structure of the native interface, it is possible to evaluate the potential for developing therapeutic inhibitors of the interaction. We find that the interacting surfaces of the protein are relatively flat, containing no obvious pockets for the design of small molecule inhibitors. CONCLUSION: Our results confirm the architecture of the TEL-SAM polymer proposed previously based on a mutant structure. The fact that the interface contains no obvious potential binding pockets suggests that it may be difficult to find small molecule inhibitors to treat malignancies in this way

    Predicting Risk of Potentially Preventable Hospitalization in Older Adults with Dementia

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151826/1/jgs16030_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151826/2/jgs16030.pd

    Group consensus review minimizes the diagnosis of “follicular lesion of undetermined significance” and improves cytohistologic concordance

    Full text link
    We conducted a group consensus review of thyroid aspirates that were previously interpreted as “atypia of undetermined significance/follicular lesion of undetermined significance” (AUS/FLUS) and followed by surgical interventions. The study aimed to investigate if consensus review would minimize the diagnosis of AUS/FLUS with an optimal interobserver agreement and also promote a better cytohistologic concordance. A group of reviewers who were blinded to the corresponding histologic findings simultaneously evaluated a total of 50 aspirates at a multiheaded light microscope. Using the Bethesda System for Reporting Thyroid Cytopathology as a guideline, a consensus interpretation was reached upon review of each aspirate. Interobserver agreement was calculated and recorded. The cytohistologic correlation was then performed between the consensus interpretation and the corresponding histologic diagnosis. The consensus review reclassified 26 (52%) aspirates as non‐neoplasia/benign, 10 (20%) as follicular neoplasm/suspicious for a follicular neoplasm, 1 (2%) as papillary thyroid carcinoma, and 2 (4%) as nondiagnostic. Eleven (22%) aspirates remained AUS/FLUS. The interobserver agreement across the five diagnostic categories ranged from 71.6% to 100% with an average level of 88.8%. Cytohistologic concordance was achieved in 24 of 26 (92.3%) and 9 of 11 (81.8%) aspirates that were reclassified as non‐neoplasia/benign and neoplasia/malignancy, respectively. A diagnostic accuracy of 89.2% (33/37) was obtained in reclassified cases. In conclusion, the group consensus review minimized AUS/FLUS, offered an optimal level of interobserver agreement, and most importantly, promoted excellent cytohistologic concordance in reclassified cases and, therefore, could play a substantial role in the future in reducing reaspiration and/or unnecessary surgeries. Diagn. Cytopathol. 2012. © 2011 Wiley‐Liss, IncPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94484/1/21702_ftp.pd

    Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Get PDF
    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation

    Nonperturbative chemical modification of graphene for protein micropatterning

    No full text
    International audienceGraphene's extraordinary physical properties and its planar geometry make it an ideal candidate for a wide array of applications, many of which require controlled chemical modification and the spatial organization of molecules on its surface. In particular, the ability to functionalize and micropattern graphene with proteins is relevant to bioscience applications such as biomolecular sensors, single-cell sensors, and tissue engineering.Wereport a general strategy for the noncovalent chemical modification of epitaxial graphene for protein immobilization and micropatterning. We show that bifunctional molecule pyrenebutanoic acid-succinimidyl ester (PYR-NHS), composed of the hydrophobic pyrene and the reactive succinimide ester group, binds to graphene noncovalently but irreversibly. We investigate whether the chemical treatment perturbs the electronic band structure of graphene using X-ray photoemission (XPS) and Raman spectroscopy. Our results show that the sp2 hybridization remains intact and that the π band maintains its characteristic Lorentzian shape in the Raman spectra. The modified graphene surfaces, which bind specifically to amines in proteins, are micropatterned with arrays of fluorescently labeled proteins that are relevant to glucose sensors (glucose oxidase) and cell sensor and tissue engineering applications (laminin)

    Mutations in Nonessential eIF3k and eIF3l Genes Confer Lifespan Extension and Enhanced Resistance to ER Stress in Caenorhabditis elegans

    Get PDF
    The translation initiation factor eIF3 is a multi-subunit protein complex that coordinates the assembly of the 43S pre-initiation complex in eukaryotes. Prior studies have demonstrated that not all subunits of eIF3 are essential for the initiation of translation, suggesting that some subunits may serve regulatory roles. Here, we show that loss-of-function mutations in the genes encoding the conserved eIF3k and eIF3l subunits of the translation initiation complex eIF3 result in a 40% extension in lifespan and enhanced resistance to endoplasmic reticulum (ER) stress in Caenorhabditis elegans. In contrast to previously described mutations in genes encoding translation initiation components that confer lifespan extension in C. elegans, loss-of-function mutations in eif-3.K or eif-3.L are viable, and mutants show normal rates of growth and development, and have wild-type levels of bulk protein synthesis. Lifespan extension resulting from EIF-3.K or EIF-3.L deficiency is suppressed by a mutation in the Forkhead family transcription factor DAF-16. Mutations in eif-3.K or eif-3.L also confer enhanced resistance to ER stress, independent of IRE-1-XBP-1, ATF-6, and PEK-1, and independent of DAF-16. Our data suggest a pivotal functional role for conserved eIF3k and eIF3l accessory subunits of eIF3 in the regulation of cellular and organismal responses to ER stress and agingNational Institutes of Health (U.S.) (Grant R01-GM084477)National Institutes of Health (U.S.) (Pre-Doctoral Training Grant T32GM007287

    Impact of multi-targeted antiretroviral treatment on gut T cell depletion and HIV reservoir seeding during acute HIV infection.

    Get PDF
    BackgroundLimited knowledge exists on early HIV events that may inform preventive and therapeutic strategies. This study aims to characterize the earliest immunologic and virologic HIV events following infection and investigates the usage of a novel therapeutic strategy.Methods and findingsWe prospectively screened 24,430 subjects in Bangkok and identified 40 AHI individuals. Thirty Thais were enrolled (8 Fiebig I, 5 Fiebig II, 15 Fiebig III, 2 Fiebig IV) of whom 15 completed 24 weeks of megaHAART (tenofovir/emtricitabine/efavirenz/raltegravir/maraviroc). Sigmoid biopsies were completed in 24/30 at baseline and 13/15 at week 24. At baseline, the median age was 29 years and 83% were MSM. Most were symptomatic (87%), and were infected with R5-tropic (77%) CRF01_AE (70%). Median CD4 was 406 cells/mm(3). HIV RNA was 5.5 log(10) copies/ml. Median total blood HIV DNA was higher in Fiebig III (550 copy/10(6) PBMC) vs. Fiebig I (8 copy/10(6) PBMC) (p = 0.01) while the median %CD4+CCR5+ gut T cells was lower in Fiebig III (19%) vs. Fiebig I (59%) (p = 0.0008). After 24 weeks of megaHAART, HIV RNA levels of <50 copies were achieved in 14/15 in blood and 13/13 in gut. Total blood HIV DNA at week 0 predicted reservoir size at week 24 (p<0.001). Total HIV DNA declined significantly and was undetectable in 3 of 15 in blood and 3 of 7 in gut. Frequency of CD4+CCR5+ gut T cells increased from 41% at baseline to 64% at week 24 (p>0.050); subjects with less than 40% at baseline had a significant increase in CD4+CCR5+ T cells from baseline to week 24 (14% vs. 71%, p = 0.02).ConclusionsGut T cell depletion and HIV reservoir seeding increases with progression of AHI. MegaHAART was associated with immune restoration and reduced reservoir size. Our findings could inform research on strategies to achieve HIV drug-free remission
    corecore