319 research outputs found

    Improvement in the hygroscopicity of inorganic binder through a dual coating process

    Get PDF
    The use of an anti-absorbent is proposed in this work to reduce the hygroscopicity of the inorganic binder in the casting mold, in which the anti-absorbent is coated on the mold prepared with an inorganic binder. Three types of polymers were used to select material with optimal water resistance. Polystyrene (PS) and polyvinyl alcohol (PVA) were used as a water-insoluble polymer and water-soluble polymer, respectively. In addition, polyurethane (PU) prepolymer has intermediate properties between PS and PVA. PVA and PU prepolymer were used for comparative testing with PS. For this testing process, the prepared green body was dipped into a solution of inorganic binder precursor mixed with tetraethyl orthosilicate (TEOS, SiO2 precursor) and sodium methoxide (NaOMe, Na2O precursor), and then dipped into a solution of coating reagent after a drying process. Thus, these series of coating processes in a green body is called a dual coating process. Finally the sample was heat-treated at 1000 °C to generate a glass phase by an organic–inorganic conversion process. In the sample prepared with PS, the highest contact angle and a high firing strength were exhibited, independent of polymer concentration, while the sample coated with PVA showed lower green and firing strengths. When prepolymer, PU, was applied, the green strength was remarkably improved, showing lower firing strength compared with that of PS. The green and firing strengths were optimized through the dual coating process with PS. Moreover, the moisture-proof effect of the dual coating process was verified through the moisture steam test

    Fracture behavior and thermal durability of lanthanum zirconate-based thermal barrier coatings with buffer layer in thermally graded mechanical fatigue environments

    Get PDF
    The effects of buffer layer on the fracture behavior and lifetime performance of lanthanum zirconate (La2Zr2O7; LZO)-based thermal barrier coatings (TBCs) were investigated through thermally graded mechanical fatigue (TGMF) tests, which are designed to simulate the operating conditions of rotating parts in gas turbines. To improve the thermal durability of LZO-based TBCs, composite coats consisting of two feedstock powders of LZO and 8 wt% yttria-doped stabilized zirconia (8YSZ) were prepared by mixing different volume ratios (50:50 and 25:75, respectively). The composite coat of 50:50 volume ratio was employed as the top coat, and two types of buffer layers were introduced (25:75 volume ratio in LZO and 8YSZ, and 8YSZ only). These TBC systems were compared with a reference TBC system of 8YSZ. The TGMF tests with a tensile load of 60 MPa were performed for 1000 cycles, at a surface temperature of 1100 °C and a dwell time of 10 min, and then the samples were cooled at room temperature for 10 min in each cycle. For the single-layer TBCs, the composite top coat showed similar results as for the reference TBC system. The triple-layer coating (TLC) showed the best thermal cycle performance among all samples, suggesting that the buffer layer was efficient in improving lifetime performance. Failure modes were different for the TBC systems. Delamination and/or cracks were created at the interface between the bond and top coats or above the interface in the single-layer TBCs, but the TBCs with the buffer layer were delaminated and/or cracked at the interface between the buffer layer and the top coat, independent of buffer layer species. This study allows further understanding of the LZO-based TBC failure mechanisms in operating conditions, especially in combined thermal and mechanical environments, in order to design reliable TBC systems

    Endoscopic Submucosal Dissection of Gastric Epithelial Neoplasms after Partial Gastrectomy: A Single-Center Experience

    Get PDF
    Aims. To investigate the feasibility and safety of endoscopic submucosal dissection (ESD) of gastric epithelial neoplasms in the remnant stomach (GEN-RS) after various types of partial gastrectomy. Methods. This study included 29 patients (31 lesions) who underwent ESD for GEN-RS between March 2006 and August 2016. Clinicopathologic data were retrieved retrospectively to assess the therapeutic ESD outcomes, including en bloc and complete resection rates and procedure-related adverse events. Results. The en bloc, complete, and curative resection rates were 90%, 77%, and 71%, respectively. The types of previous gastrectomy, tumor size, macroscopic type, and tumor histology were not associated with incomplete resection. Only tumors involving the suture lines from the prior partial gastrectomy were significantly associated with incomplete resection. The procedure-related bleeding and perforation rates were 6% and 3%, respectively; none of the adverse events required surgical intervention. During a median follow-up period of 25 months (range, 6–58 months), there was no recurrence in any case. Conclusions. ESD is a safe and feasible treatment for GEN-RS regardless of the previous gastrectomy type. However, the complete resection rate decreases for lesions involving the suture lines

    TRAIL sensitize MDR cells to MDR-related drugs by down-regulation of P-glycoprotein through inhibition of DNA-PKcs/Akt/GSK-3β pathway and activation of caspases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of new modulator possessing high efficacy, low toxicity and high selectivity is a pivotal approach to overcome P-glycoprotein (P-gp) mediated multidrug resistance (MDR) in cancer treatment. In this study, we suggest a new molecular mechanism that TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) down-regulates P-glycoprotein (P-gp) through inhibition of DNA-PKcs/Akt/GSK-3β pathway and activation of caspases and thereby sensitize MDR cells to MDR-related drugs.</p> <p>Results</p> <p>MDR variants, CEM/VLB<sub>10-2</sub>, CEM/VLB<sub>55-8 </sub>and CEM/VLB<sub>100 </sub>cells, with gradually increased levels of P-gp derived from human lymphoblastic leukemia CEM cells, were gradually more susceptible to TRAIL-induced apoptosis and cytotoxicity than parental CEM cells. The P-gp level of MDR variants was positively correlated with the levels of DNA-PKcs, pAkt, pGSK-3β and c-Myc as well as DR5 and negatively correlated with the level of c-FLIPs. Hypersensitivity of CEM/VLB<sub>100 </sub>cells to TRAIL was accompanied by the activation of mitochondrial apoptotic pathway as well as the activation of initiator caspases. In addition, TRAIL-induced down-regulation of DNA-PKcs/Akt/GSK-3β pathway and c-FLIP and up-regulation of cell surface expression of death receptors were associated with the increased susceptibility to TRAIL of MDR cells. Moreover, TRAIL inhibited P-gp efflux function via caspase-3-dependent degradation of P-gp as well as DNA-PKcs and subsequently sensitized MDR cells to MDR-related drugs such as vinblastine and doxorubicin. We also found that suppression of DNA-PKcs by siRNA enhanced the susceptibility of MDR cells to vincristine as well as TRAIL via down-regulation of c-FLIP and P-gp expression and up-regulation of DR5.</p> <p>Conclusion</p> <p>This study showed for the first time that the MDR variant of CEM cells was hypersensitive to TRAIL due to up-regulation of DR5 and concomitant down-regulation of c-FLIP, and degradation of P-gp and DNA-PKcs by activation of caspase-3 might be important determinants of TRAIL-induced sensitization of MDR cells to MDR-related drugs. Therefore, combination of TRAIL and chemotherapeutic drugs may be a good strategy for treatment of cancer with multidrug resistance.</p

    Geriatric Nutritional Risk Index as a prognostic marker in patients with extensive-stage disease small cell lung cancer: Results from a randomized controlled trial

    Get PDF
    Background Clinical impact of the Geriatric Nutritional Risk Index (GNRI) in patients with extensive-stage disease small cell lung cancer (ED-SCLC) have not previously been reported. Methods This study analyzed 352 patients enrolled in a previous randomized phase III trial comparing the efficacy of irinotecan plus cisplatin with that of etoposide plus cisplatin as the first-line therapy for ED-SCLC. GNRI values were calculated using serum albumin levels and actual and ideal bodyweights. Patients with a GNRI > 98, 92-98, and <92 were grouped into no, low, and moderate/major risk groups, respectively. Results The objective response rates were 63.2%, 52.6%, and 49.2% in the no, low, and moderate/major risk groups, respectively (P = 0.024). The median progression-free survival (PFS) was shorter in patients with a lower GNRI than in those with a higher GNRI (no vs. low vs. moderate/major risk group; 6.5 vs. 5.8 vs. 5.9 months, respectively; P = 0.028). There were significant differences in median overall survival (OS) according to GNRI (no vs. low vs. moderate/major risk group; 13.2 vs. 10.3 vs. 8.4 months, respectively; P < 0.001). Multivariate analysis revealed that being in the moderate/major risk group was an independent poor prognostic factor for PFS (hazard ratio [HR]: 1.300, 95% confidence interval [CI]: 1.012-1.670; P = 0.040) and OS (HR: 1.539; 95% CI: 1.069-2.216; P = 0.020). Conclusions This prospective study shows that a low GNRI value was associated with a poor prognosis, and it supports the relationship between systemic inflammation, nutritional status, and clinical outcomes in patients with ED-SCLC.Key points Significant findings of the study The lower GNRI group had a low response rate to chemotherapy for ED-SCLC. The HRs for PFS and OS were 1.300 and 1.539 in the patients with GNRI < 92. What this study adds Low GNRI is associated with poor prognosis in ED-SCLC.

    Predicting the Interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions (PPIs) play key roles in various cellular functions. In addition, some critical inter-species interactions such as host-pathogen interactions and pathogenicity occur through PPIs. Phytopathogenic bacteria infect hosts through attachment to host tissue, enzyme secretion, exopolysaccharides production, toxins release, iron acquisition, and effector proteins secretion. Many such mechanisms involve some kind of protein-protein interaction in hosts. Our first aim was to predict the whole protein interaction pairs (interactome) of <it>Xanthomonas oryzae </it>pathovar oryzae (Xoo) that is an important pathogenic bacterium that causes bacterial blight (BB) in rice. We developed a detection protocol to find possibly interacting proteins in its host using whole genome PPI prediction algorithms. The second aim was to build a DB server and a bioinformatic procedure for finding target proteins in Xoo for developing pesticides that block host-pathogen protein interactions within critical biochemical pathways.</p> <p>Description</p> <p>A PPI network in Xoo proteome was predicted by bioinformatics algorithms: PSIMAP, PEIMAP, and iPfam. We present the resultant species specific interaction network and host-pathogen interaction, XooNET. It is a comprehensive predicted initial PPI data for Xoo. XooNET can be used by experimentalists to pick up protein targets for blocking pathological interactions. XooNET uses most of the major types of PPI algorithms. They are: 1) Protein Structural Interactome MAP (PSIMAP), a method using structural domain of SCOP, 2) Protein Experimental Interactome MAP (PEIMAP), a common method using public resources of experimental protein interaction information such as HPRD, BIND, DIP, MINT, IntAct, and BioGrid, and 3) Domain-domain interactions, a method using Pfam domains such as iPfam. Additionally, XooNET provides information on network properties of the Xoo interactome.</p> <p>Conclusion</p> <p>XooNET is an open and free public database server for protein interaction information for Xoo. It contains 4,538 proteins and 26,932 possible interactions consisting of 18,503 (PSIMAP), 3,118 (PEIMAP), and 8,938 (iPfam) pairs. In addition, XooNET provides 3,407 possible interaction pairs between two sets of proteins; 141 Xoo proteins that are predicted as membrane proteins and rice proteomes. The resultant interacting partners of a query protein can be easily retrieved by users as well as the interaction networks in graphical web interfaces. XooNET is freely available from <url>http://bioportal.kobic.kr/XooNET/</url>.</p

    Hypertrophic Cardiomyopathy Complicated by Left Ventricular Apical Necrosis and Aneurysm in a Young Man: FDG-PET Findings

    Get PDF
    A 29-year old male was transferred to our hospital with an abnormal chest X-ray finding diagnosed as hypertrophic cardiomyopathy with apical necrosis and aneurysm formation. Four years after the initial hospitalization, we confirmed the aneurysm and necrosis using both integrated positron emission tomography (PET) and computed tomography (CT) scanning. The F-18 2-fluoro-2-deoxy-D-glucose (FDG) PET/CT enabled precise localization of the aneurysm, which was found to be composed of semi-lunar calcification of non-metabolic myocardium. A contrast-enhanced CT angiography showed an hour-glass appearance of the left ventricular cavity. The integrated PET/CT fusion scanner is a novel multimodality technology that allows for a comprehensive analysis of the anatomical and functional status of complex heart disease. Based on these findings, long standing mechanical and physiologic abnormalities may have led to chronic ischemia in the hypertrophied myocardium, induced necrosis and calcification at the cardiac apex

    Molecular dynamics modeling of mechanical and tribological properties of additively manufactured AlCoCrFe high entropy alloy coating on aluminum substrate

    Get PDF
    In this work, an improved molecular dynamics (MD) model is developed to simulate the nanoindentation and tribological tests of additively manufactured high entropy alloys (HEA) AlCoCrFe coated on an aluminum substrate. The model shows that in the interface region between the HEA coating and Al substrate, as the laser heating temperature increases during the HEA coating additive manufacturing process, more Al in the substrate is melted to react with other elements in the coating layer, which is qualitatively in agreement with experiment in literature. Using the simulated nanoindentation tests, the calculated Young's modulus of pure Al and Al with HEA coating is 79.93 GPa and 119.30 GPa, respectively. In both our simulations and the experimental results in the literature, the hardness of Al with the HEA coating layer is about 10 times higher than the Al hardness, indicating that HEA can significantly improve the hardness of the metallic substrate. Using the simulated tribological scratch tests, the computed wear tracks are qualitatively in agreement with experimental images in literature. Both our model and experiment show that the Al with HEA coating has a much smaller wear track than that of Al, due to less plastic deformation, confirmed by a dislocation analysis. The computed average coefficient of friction of Al is 0.62 and Al with HEA coating is 0.14. This work demonstrates that the HEA coating significantly improves the mechanical and tribology properties, which are in excellent agreement with the experiments reported in the literature
    corecore