85 research outputs found

    Pressurized hot water flow-through extraction of birch wood

    Get PDF
    2015Diss. : Åbo Akademi University, 201

    Optimising and scaling up hot water extraction of tannins from Norway spruce and Scots pine bark

    Get PDF
    Tannins from Norway spruce (Picea abies [L.] Karst.) and Scots pine (Pinus sylvestris L.) bark were extracted with water at different temperatures (60–140 °C) in an ASE-350 system in order to optimize yield. In addition, the effect of chemicals such as urea, sodium bisulfite (NaHSO3), sodium carbonate (Na2CO3), and sodium benzoate on the yield was also investigated. Bark from debarking processes at both a sawmill and a pulp mill were included. The highest overall yield expressed as total dissolved solids (TDS) was obtained with hot water extraction of spruce bark at 140 °C. The TDS was 117 mg/g and it contained 47 mg/g tannins. With an increase in extraction temperature over 100 °C, the proportion of tannins decreased, whereas the proportion of carbohydrates increased. The addition of sodium carbonate improved yield within a 60–90 °C temperature range compared with pure water. Other chemicals did not improve the yield. Pine bark showed similar extraction yields to spruce bark but the proportion of tannins was lower in spruce than in pine. Pure water at 110 °C was chosen to be used for piloting in larger scale 300-liter extraction vessel. Based on the results, a machine-learning approach was applied using seemingly unrelated regression models (SUR). The models were able to predict the extracted tannin yields of spruce and pine bark when extractions were scaled up to 2 liters and then to 300 liters

    Wood hemicelluloses as effective wall materials for spray-dried microcapsulation of polyunsaturated fatty acid-rich oils

    Get PDF
    The most commonly-used and effective wall materials (WMs) for spray-dried microencapsulation of bioactive compounds are either costly, or derived from unsustainable sources, which lead to an increasing demand for alternatives derived from sustainable and natural sources, with low calories and low cost. Wood hemicelluloses obtained from by-products of forest industries appear to be attractive alternatives as they have been reported to have good emulsifying properties, low viscosity at high concentrations, high heat stability and low heat transfer. Here, we investigated the applicability of spruce galactoglucomannans (GGM) and birch glucuronoxylans (GX), to encapsulate flaxseed oil (FO, polyunsaturated fatty acid-rich plant based oil) by spray drying; and the results were compared to those of the highly effective WM, gum Arabic (GA). It was found that depending on solid ratios of WM:FO (1:1, 3:1 and 5:1), encapsulation efficiency of GGM was 88–96%, and GX was 63–98%. At the same encapsulation ratio, both GGM and GX had higher encapsulation efficiency than GA (49–92%) due to their ability to produce feed emulsions with a smaller oil droplet size and higher physical stability. In addition, the presence of phenolic residues in GGM and GX powders enabled them to have a greater ability to protect oil from oxidation during spray drying than GA. Physiochemical properties of encapsulated powders including thermal properties, morphology, molecular structure, particle size and water adsorption intake are also investigated. The study has explored a new value-added proposition for wood hemicelluloses which can be used as effective WMs in the production of microcapsules of polyunsaturated fatty acid-rich oils for healthy and functional products in food, pharmaceutical and cosmetic industries.Peer reviewe

    Wood hemicelluloses as effective wall materials for spray-dried microcapsulation of polyunsaturated fatty acid-rich oils

    Get PDF
    The most commonly-used and effective wall materials (WMs) for spray-dried microencapsulation of bioactive compounds are either costly, or derived from unsustainable sources, which lead to an increasing demand for alternatives derived from sustainable and natural sources, with low calories and low cost. Wood hemicelluloses obtained from by-products of forest industries appear to be attractive alternatives as they have been reported to have good emulsifying properties, low viscosity at high concentrations, high heat stability and low heat transfer. Here, we investigated the applicability of spruce galactoglucomannans (GGM) and birch glucuronoxylans (GX), to encapsulate flaxseed oil (FO, polyunsaturated fatty acid-rich plant based oil) by spray drying; and the results were compared to those of the highly effective WM, gum Arabic (GA). It was found that depending on solid ratios of WM:FO (1:1, 3:1 and 5:1), encapsulation efficiency of GGM was 88–96%, and GX was 63–98%. At the same encapsulation ratio, both GGM and GX had higher encapsulation efficiency than GA (49–92%) due to their ability to produce feed emulsions with a smaller oil droplet size and higher physical stability. In addition, the presence of phenolic residues in GGM and GX powders enabled them to have a greater ability to protect oil from oxidation during spray drying than GA. Physiochemical properties of encapsulated powders including thermal properties, morphology, molecular structure, particle size and water adsorption intake are also investigated. The study has explored a new value-added proposition for wood hemicelluloses which can be used as effective WMs in the production of microcapsules of polyunsaturated fatty acid-rich oils for healthy and functional products in food, pharmaceutical and cosmetic industries.Peer reviewe

    Active food packaging through controlled in situ production and release of hexanal

    Get PDF
    Transportation and storage of vegetables and fruits, including berries, is increasing to meet growing consumer demand for fresh foods. Ripening and softening of plant tissues may be slowed down by hexanal, a safe volatile compound that also has antimicrobial properties. Thus hexanal could be applied during the food distribution chain to slow down the spoilage of plant-based products and reduce food waste. Nonetheless, due to the rapid evaporation of hexanal, a constant supply is needed. Our aim was to develop a concept to incorporate food-grade sunflower oil in a polysaccharide aerogel matrix for controlled in situ production and release of hexanal. We compared enzyme- and light-catalyzed lipid oxidation reactions, determined the release of hexanal at different conditions, and performed storage stability tests of blueberries and cherry tomatoes. The lipid-loaded aerogels assessed here are a potential novel delivery matrix for controlled hexanal formation to extend the shelf life of plant-based products.Peer reviewe

    Determination of physical emulsion stabilization mechanisms of wood hemicelluloses via rheological and interfacial characterization

    Get PDF
    Materials manufacturing industries seek efficient, economic, and sustainable compounds for stabilizing dispersed systems such as emulsions. In this study, novel, abundant biobased hydrocolloids spruce galactoglucomannans (GGM) and birch glucuronoxylans (GX) were obtained from a forestry biorefining process and characterized as versatile stabilizers of rapeseed oil-in-water emulsions. For the first time, GGM and GX isolated by pressurized hot water extraction (PHWE) of spruce and birch saw meal, respectively, were studied in emulsions. The PHWE wood hemicelluloses—polysaccharides with relatively low molar mass—facilitated the formation of emulsions with small average droplet size and efficiently prevented droplet coalescence. GGM and GX lowered the surface tension of emulsions’ oil–water interface and increased the viscosity of the continuous phase. However, viscosity of the wood hemicellulose-based systems was low compared to that of commercial polymeric stabilizers. GGMstabilized emulsions with varying oil volume fractions were characterized in terms of their rheological properties, including large amplitude oscillation shear (LAOS) measurements, and compared to emulsions prepared with a classical small-molecular surfactant, Tween20. The physical emulsion stabilization mechanisms of GGM and GX are suggested as steric repulsion assisted by Pickering-type stabilization. Wood hemicelluloses have potential as highly promising future bioproducts for versatile industrial applications involving colloidal systems and soft materials.Peer reviewe

    Phenolic residues in spruce galactoglucomannans improve stabilization of oil-in-water emulsions

    Get PDF
    Hypothesis: Amphiphilic character of surfactants drives them at the interface of dispersed systems, such as emulsions. Hemicellulose-rich wood extracts contain assemblies (lignin-carbohydrate complexes, LCC) with natural amphiphilicity, which is expected to depend on their chemical composition resulting from the isolation method. Lignin-derived phenolic residues associated with hemicelluloses are hypothesized to contribute to emulsions' interfacial properties and stability. Experiments: We investigated the role of phenolic residues in spruce hemicellulose extracts in the stabilization of oil-in-water emulsions by physical and chemical approach. Distribution and changes occurring in the phenolic residues at the droplet interface and in the continuous phase were studied during an accelerated storage test. Meanwhile, the physical stability and lipid oxidation in emulsions were monitored. Findings: Naturally associated lignin residues in GGM act as vehicles for anchoring these hemicelluloses into the oil droplet interface and further enable superior stabilization of emulsions. By adjusting the isolation method of GGM regarding their phenolic profile, their functionalities, especially interfacial behavior, can be altered. Retaining the native interactions of GGM and phenolic residues is suggested for efficient physical stabilization and extended protection against lipid oxidation. The results can be widely applied as guidelines in tailoring natural or synthetic amphiphilic compounds for interfacial stabilization. (C) 2017 Elsevier Inc. All rights reserved.Peer reviewe

    Extractives of Tree Biomass of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Lipophilic Compounds, Stilbenes, and Lignans

    Get PDF
    The aim of the study was to quantify total extractive contents and lipophilic compounds, stilbenes, and lignans in Scots pine stem wood, stem bark, branch biomass, and sawmill residues in four climatic regions of Finland to evaluate the most optimal sources of extractives for bio-based chemical biorefining and bioenergy products. Data were derived from 78 chip samples from the before-mentioned raw materials, the samples being pooled by tree height position from the sample trees of 42 experimental forest stands, and sawdust lots from 10 log stands. Accelerated solvent extraction (ASE) was employed to determine total extractive contents, followed by gas chromatography with flame ionization detection (GC–FID) to quantify extractive groups and gas chromatography-mass spectrometry (GC–MS) to analyse individual extractive compounds. Resin acids and triglycerides followed by fatty acids were the dominant extractive groups. Resin acids were most abundant in stem wood from final fellings and in sawdust, fatty acids in bark and branch biomass, and triglycerides also in stem wood from thinnings and the top parts of trees. Of the minor extractive groups, stilbenes were the most abundant in stem wood from final fellings and in sawdust, and steryl esters, sterols, and lignans in bark and branch biomass, the two last groups almost missing from other biomass components. Regional differences in the contents of extractive groups were generally small, 1.0−1.5 percentage points at the maximum, but factor analysis distinguished northern and southern regions into their own groups. Bark was the most potential source of fatty acids and sterols in southern Finland, and triglycerides and steryl esters in northern Finland. In stem wood, steryl esters, triglycerides, and lignans decreased and stilbenes increased from north to south. Certain fatty acids and resin acids were more frequent in the north. The results highlighted the importance of focused procurement and efficient sorting of raw materials, purity, unique properties, and feasible isolation techniques for competitive ability as well as large raw material volumes or well-defined value-added products
    • 

    corecore