320 research outputs found

    The just-noticeable difference in speech-to-noise ratio

    Get PDF
    Just-noticeable differences (JNDs) have been measured for various features of sounds, but despite its importance to communication, there is no benchmark for what is a just-noticeable—and possibly meaningful—difference in speech-to-noise ratio (SNR). SNR plays a crucial role in speech communication for normal-hearing and hearing-impaired listeners. Difficulty hearing speech in background noise—a poor SNR—often leads to dissatisfaction with hearing-assistance devices. While such devices attempt through various strategies to address this problem, it is not currently known how much improvement in SNR is needed to provide a noticeable benefit. To investigate what is a noticeable benefit, we measured the JND in SNR for both normal-hearing and hearing-impaired listeners. Here, we report the SNR JNDs of 69 participants of varying hearing ability, estimated using either an adaptive or fixed-level procedure. The task was to judge which of the two intervals containing a sentence in speech-spectrum noise presented over headphones was clearer. The level of each interval was roved to reduce the influence of absolute level cues. The results of both procedures showed an average SNR JND of 3 dB that was independent of hearing ability. Further experiments using a subset of normal-hearing listeners showed that level roving does elevate threshold. These results suggest that noise reduction schemes may need to achieve a benefit greater than 3 dB to be reliably discriminable

    Integration of professional judgement and decision-making in high-level adventure sports coaching practice

    Get PDF
    This study examined the integration of professional judgement and decision-making processes in adventure sports coaching. The study utilised a thematic analysis approach to investigate the decision-making practices of a sample of high-level adventure sports coaches over a series of sessions. Results revealed that, in order to make judgements and decisions in practice, expert coaches employ a range of practical and pedagogic management strategies to create and opportunistically use time for decision-making. These approaches include span of control and time management strategies to facilitate the decision-making process regarding risk management, venue selection, aims, objectives, session content, and differentiation of the coaching process. The implication for coaches, coach education, and accreditation is the recognition and training of the approaches that“create time” for the judgements in practice, namely“creating space to think”. The paper concludes by offering a template for a more expertise-focused progression in adventure sports coachin

    Acting on Reflection: the Effect of Reflection on Students’ Clinical Performance on a Standardized Patient Examination

    Get PDF
    BACKGROUND: Little evidence exists to support the value of reflection in the clinical setting. OBJECTIVE: To determine whether reflecting and revisiting the “patient” during a standardized patient (SP) examination improves junior medical students’ performance and to analyze students’ perceptions of its value. DESIGN: Students completed a six-encounter clinical skills examination, writing a guided assessment after each encounter to trigger reflection. SPs evaluated the students with Medical Skills and Patient Satisfaction checklists. During the last three encounters, students could opt to revisit the SP and be reevaluated with identical checklists. PARTICIPANTS: One hundred and forty-nine third year medical students. MEASUREMENTS: Changes in scores in the Medical Skills and Patient Satisfaction checklists between first visit and revisit were tested separately per case as well as across cases. RESULTS: On the medical skills and patient satisfaction checklists, mean revisit scores across cases were significantly higher than mean first visit scores [12.6 vs 12.2 (pooled SD = 2.4), P = .0001; 31.2 vs 31.0 (pooled SD = 3.5), P = .0001)]. Sixty-five percent of the time, students rated “reflect–revisit” positively, 34% neutrally, and 0.4% negatively. Five themes were identified in the positive comments: enhancement of (1) medical decision making, (2) patient education/counseling, (3) student satisfaction/confidence, (4) patient satisfaction/confidence, and (5) clinical realism. CONCLUSIONS: Offering third year medical students the option to reflect and revisit an SP during a clinical skills examination produced a small but nontrivial increase in clinical performance. Students perceived the reflect–revisit experience as enhancing patient-centered practices (counseling, education) as well as their own medical decision making and clinical confidence

    The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study

    Get PDF
    Midostaurin (PKC412A), N-benzoyl-staurosporine, potently inhibits protein kinase C alpha (PKCα), VEGFR2, KIT, PDGFR and FLT3 tyrosine kinases. In mice, midostaurin slows growth and delays lung metastasis of melanoma cell lines. We aimed to test midostaurin's safety, efficacy and biologic activity in a Phase IIA clinical trial in patients with metastatic melanoma. Seventeen patients with advanced metastatic melanoma received midostaurin 75 mg p.o. t.i.d., unless toxicity or disease progression supervened. Patient safety was assessed weekly, and tumour response was assessed clinically or by CT. Tumour biopsies and plasma samples obtained at entry and after 4 weeks were analysed for midostaurin concentration, PKC activity and multidrug resistance. No tumour responses were seen. Two (12%) patients had stable disease for 50 and 85 days, with minor response in one. The median overall survival was 43 days. Seven (41%) discontinued treatment with potential toxicity, including nausea, vomiting, diarrhoea and/or fatigue. One patient had >50% reduction in PKC activity. Tumour biopsies showed two PKC isoforms relatively insensitive to midostaurin, out of three patients tested. No modulation of multidrug resistance was demonstrated. At this dose schedule, midostaurin did not show clinical or biologic activity against metastatic melanoma. This negative trial reinforces the importance of correlating biologic and clinical responses in early clinical trials of targeted therapies

    Development of an Orthotopic Human Pancreatic Cancer Xenograft Model Using Ultrasound Guided Injection of Cells

    Get PDF
    Mice have been employed as models of cancer for over a century, providing significant advances in our understanding of this multifaceted family of diseases. In particular, orthotopic tumor xenograft mouse models are emerging as the preference for cancer research due to increased clinical relevance over subcutaneous mouse models. In the current study, we developed orthotopic pancreatic cancer xenograft models in mice by a minimally invasive method, ultrasound guided injection (USGI) comparable to highly invasive surgical orthotopic injection (SOI) methods. This optimized method prevented injection complications such as recoil of cells through the injection canal or leakage of cells out of the pancreas into the peritoneal cavity. Tumor growth was monitored in vivo and quantified by ultrasound imaging weekly, tumors were also detected by in vivo fluorescence imaging using a tumor targeted molecular probe. The mean tumor volumes for the USGI and SOI models after 2 weeks of tumor growth were 205 mm3 and 178 mm3 respectively. By USGI of human pancreatic cancer cell lines, human orthotopic pancreatic cancer xenografts were established. Based on ultrasound imaging, the orthotopic human pancreatic cancer xenograft take rate was 100% for both human pancreatic cancer cell lines used, MiaPaCa-2 and Su86.86, with mean tumor volumes of 28 mm3and 30 mm3. We demonstrated that this USGI method is feasible, reproducible, facile, minimally invasive and improved compared to the highly-invasive SOI method for establishing orthotopic pancreatic tumor xenograft models suitable for molecular imaging

    Development of an Orthotopic Human Pancreatic Cancer Xenograft Model Using Ultrasound Guided Injection of Cells

    Get PDF
    Mice have been employed as models of cancer for over a century, providing significant advances in our understanding of this multifaceted family of diseases. In particular, orthotopic tumor xenograft mouse models are emerging as the preference for cancer research due to increased clinical relevance over subcutaneous mouse models. In the current study, we developed orthotopic pancreatic cancer xenograft models in mice by a minimally invasive method, ultrasound guided injection (USGI) comparable to highly invasive surgical orthotopic injection (SOI) methods. This optimized method prevented injection complications such as recoil of cells through the injection canal or leakage of cells out of the pancreas into the peritoneal cavity. Tumor growth was monitored in vivo and quantified by ultrasound imaging weekly, tumors were also detected by in vivo fluorescence imaging using a tumor targeted molecular probe. The mean tumor volumes for the USGI and SOI models after 2 weeks of tumor growth were 205 mm3 and 178 mm3 respectively. By USGI of human pancreatic cancer cell lines, human orthotopic pancreatic cancer xenografts were established. Based on ultrasound imaging, the orthotopic human pancreatic cancer xenograft take rate was 100% for both human pancreatic cancer cell lines used, MiaPaCa-2 and Su86.86, with mean tumor volumes of 28 mm3and 30 mm3. We demonstrated that this USGI method is feasible, reproducible, facile, minimally invasive and improved compared to the highly-invasive SOI method for establishing orthotopic pancreatic tumor xenograft models suitable for molecular imaging

    Evaluation of a method for enhancing interaural level differences at low frequencies.

    Get PDF
    A method (called binaural enhancement) for enhancing interaural level differences at low frequencies, based on estimates of interaural time differences, was developed and evaluated. Five conditions were compared, all using simulated hearing-aid processing: (1) Linear amplification with frequency-response shaping; (2) binaural enhancement combined with linear amplification and frequency-response shaping; (3) slow-acting four-channel amplitude compression with independent compression at the two ears (AGC4CH); (4) binaural enhancement combined with four-channel compression (BE-AGC4CH); and (5) four-channel compression but with the compression gains synchronized across ears. Ten hearing-impaired listeners were tested, and gains and compression ratios for each listener were set to match targets prescribed by the CAM2 fitting method. Stimuli were presented via headphones, using virtualization methods to simulate listening in a moderately reverberant room. The intelligibility of speech at ±60° azimuth in the presence of competing speech on the opposite side of the head at ±60° azimuth was not affected by the binaural enhancement processing. Sound localization was significantly better for condition BE-AGC4CH than for condition AGC4CH for a sentence, but not for broadband noise, lowpass noise, or lowpass amplitude-modulated noise. The results suggest that the binaural enhancement processing can improve localization for sounds with distinct envelope fluctuations

    Non-Invasive Detection of a Small Number of Bioluminescent Cancer Cells In Vivo

    Get PDF
    Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice

    The Chemokine Receptor CXCR4 Strongly Promotes Neuroblastoma Primary Tumour and Metastatic Growth, but not Invasion

    Get PDF
    Neuroblastoma (NB) is a heterogeneous, and particularly malignant childhood neoplasm in its higher stages, with a propensity to form metastasis in selected organs, in particular liver and bone marrow, and for which there is still no efficient treatment available beyond surgery. Recent evidence indicates that the CXCR4/CXCL12 chemokine/receptor axis may be involved in promoting NB invasion and metastasis. In this study, we explored the potential role of CXCR4 in the malignant behaviour of NB, using a combination of in vitro functional analyses and in vivo growth and metastasis assessment in an orthotopic NB mouse model. We show here that CXCR4 overexpression in non-metastatic CXCR4-negative NB cells IGR-NB8 and in moderately metastatic, CXCR4 expressing NB cells IGR-N91, strongly increased tumour growth of primary tumours and liver metastases, without altering the frequency or the pattern of metastasis. Moreover shRNA-mediated knock-down experiments confirmed our observations by showing that silencing CXCR4 in NB cells impairs in vitro and almost abrogates in vivo growth. High levels of CXCL12 were detected in the mouse adrenal gland (the primary tumour site), and in the liver suggesting a paracrine effect of host-derived CXCL12 on NB growth. In conclusion, this study reveals a yet unreported NB-specific predominant growth and survival-promoting role of CXCR4, which warrants a critical reconsideration of the role of CXCR4 in the malignant behaviour of NB and other cancers
    corecore