520 research outputs found

    Modelling fat and protein concentration curves for Irish dairy cows

    Get PDF
    peer-reviewedThe objective of this study was to acquire a well-fitting, single-equation model that would represent the fat and protein concentration curves of milk from Irish dairy cows. The dataset consisted of 16,086 records from both spring and autumn calving cows from both experimental and commercial herds. Many models cited in the literature to represent milk yield were examined for their suitability to model constituent curves. Models were tested for goodness-of-fit, adherence to the assumptions of regression analysis, and their ability to predict total fat and protein concentration for an entire lactation. Wilmink’s model best satisfied these criteria. It had the best Mean Square Prediction Error (goodness-of-fit) value, it satisfied the assumptions of regression analysis (multicollinearity, heteroskedasticity, autocorrelation and normality of distribution), and it predicted the actual concentration of the constituents to within 0.01 percentage point

    Detection of abnormal recordings in Irish milk recorded data

    Get PDF
    peer-reviewedThe objective of this study was to detect abnormal recordings of milk yield, fat concentration and protein concentration in Irish milk-recorded data. The data consisted of 14,956 records from both commercial and experimental herds with 92% of the recordings recorded manually and the remainder recorded electronically. The method used in this paper was a modified version of the method employed by the Animal Improvement Programs Laboratory in Maryland, USA and conformed with the guidelines outlined by the International Committee of Animal Recording. The results illustrate the effectiveness of detecting abnormal recordings in Irish milk records. The method described in this paper, defines the upper and lower limits for each production trait and these limits along with the slope parameters were used to determine if a recording was abnormal or not. Three percent of milk yield recordings, 5% of fat concentration recordings and less than 1% of protein concentration recordings were found to be abnormal. The proportion of values declared abnormal in manually recorded and electronically recorded data were examined and found to be significantly different for fat concentration

    Does individual variation in metabolic phenotype predict fish behaviour and performance?

    Get PDF
    There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best-studied examples. After accounting for variation due to other factors, there can typically be a two to three-fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk-taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context-dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS

    Design study of the deepsky ultraviolet survey telescope

    Get PDF
    Preliminary mechanical design and specifications are presented for a wide field ultraviolet telescope and detector to be carried as a Spacelab payload. Topics discussed include support structure stiffness (torsional and bending), mirror assembly, thermal control, optical alignment, attachment to the instrument pointing pallet, control and display, power requirements, acceptance and qualification test plans, cost analysis and scheduling. Drawings are included

    Post-Formation Sodium Loss on the Moon: A Bulk Estimate

    Get PDF
    The Moon and Earth are generally similar in terms of composition, but there exist variations in the abundance of certain elements among the two bodies. These differences are a likely consequence of differing physical evolution of the two bodies over the solar system's history. While previous works have assumed this may be due to conditions during the Moon"TM"s formation, we explore the likelihood that the observed depletion in Sodium in lunar samples may be partially due to post-formation mechanisms. Solar effects, loss from a primordial atmosphere and impacts are some of the dominant post-formation mechanisms that we examine. We describe how our past and current modeling efforts indicate that a significant fraction of the observed depletion of sodium in lunar samples relative to a bulk silicate earth composition may have been due to solar activity, atmospheric loss and impacts. Using profiles of sodium abundances from lunar crustal samples may thus serve as a powerful tool towards exploring conditions on the Moon's surface throughout solar system history. Conditions on the Moon immediately after formation may still be recorded in the lunar crust and may provide a window towards interpreting observations from some of the first rocky exoplanets that will be most amenable to characterization. Potential spatial variation of sodium in the lunar crust may be a relevant consideration for future sample return efforts. Sodium Depletion in the Lunar Crust: Luna

    Weak-Lensing by Large-Scale Structure and the Polarization Properties of Distant Radio-Sources

    Get PDF
    We estimate the effects of weak lensing by large-scale density inhomogeneities and long-wavelength gravitational waves upon the polarization properties of electromagnetic radiation as it propagates from cosmologically distant sources. Scalar (density) fluctuations do not rotate neither the plane of polarization of the electromagnetic radiation nor the source image. They produce, however, an appreciable shear, which distorts the image shape, leading to an apparent rotation of the image orientation relative to its plane of polarization. In sources with large ellipticity the apparent rotation is rather small, of the order (in radians) of the dimensionless shear. The effect is larger at smaller source eccentricity. A shear of 1% can induce apparent rotations of around 5 degrees in radio sources with the smallest eccentricity among those with a significant degree of integrated linear polarization. We discuss the possibility that weak lensing by shear with rms value around or below 5% may be the cause for the dispersion in the direction of integrated linear polarization of cosmologically distant radio sources away from the perpendicular to their major axis, as expected from models for their magnetic fields. A rms shear larger than 5% would be incompatible with the observed correlation between polarization properties and source orientation in distant radio galaxies and quasars. Gravity waves do rotate both the plane of polarization as well as the source image. Their weak lensing effects, however, are negligible.Comment: 23 pages, 2 eps figures, Aastex 4.0 macros. Final version, as accepted by ApJ. Additional references and some changes in the introduction and conclusion

    Multigenerational exposure to elevated temperatures leads to a reduction in standard metabolic rate in the wild

    Get PDF
    In light of global climate change, there is a pressing need to understand and predict the capacity of populations to respond to rising temperatures. Metabolic rate is a key trait that is likely to influence the ability to cope with climate change. Yet, empirical and theoretical work on metabolic rate responses to temperature changes has so far produced mixed results and conflicting predictions. Our study addresses this issue using a novel approach of comparing fish populations in geothermally warmed lakes and adjacent ambient‐temperature lakes in Iceland. This unique ‘natural experiment' provides repeated and independent examples of populations experiencing contrasting thermal environments for many generations over a small geographic scale, thereby avoiding the confounding factors associated with latitudinal or elevational comparisons. Using Icelandic sticklebacks from three warm and three cold habitats, we measured individual metabolic rates across a range of acclimation temperatures to obtain reaction norms for each population. We found a general pattern for a lower standard metabolic rate in sticklebacks from warm habitats when measured at a common temperature, as predicted by Krogh's rule. Metabolic rate differences between warm‐ and cold‐habitat sticklebacks were more pronounced at more extreme acclimation temperatures, suggesting the release of cryptic genetic variation upon exposure to novel conditions, which can reveal hidden evolutionary potential. We also found a stronger divergence in metabolic rate between thermal habitats in allopatry than sympatry, indicating that gene flow may constrain physiological adaptation when dispersal between warm and cold habitats is possible. In sum, our study suggests that fish may diverge toward a lower standard metabolic rate in a warming world, but this might depend on connectivity and gene flow between different thermal habitats

    Solar-Storm/Lunar Atmosphere Model (SSLAM): An Overview of the Effort and Description of the Driving Storm Environment

    Get PDF
    On 29 April 1998, a coronal mass ejection (CME) was emitted from the Sun that had a significant impact on bodies located at 1 AU. The terrestrial magnetosphere did indeed become more electrically active during the storm passage but an obvious question is the effect of such a storm on an exposed rocky body like our Moon. The solar-storm/lunar atmosphere modeling effort (SSLAM) brings together surface interactions, exosphere, plasma, and surface charging models all run with a common driver - the solar storm and CME passage occurring from 1-4 May 1998. We present herein an expanded discussion on the solar driver during the 1-4 May 1998 period that included the passage of an intense coronal mass ejection (CME) that had> 10 times the solar wind density and had a compositional component of He++ that exceeded 20%. We also provide a very brief overview oflhe SSLAM system layout and overarching results. One primary result is that the CME driver plasma can greatly increase the exospheric content via sputtering, with total mass loss rates that approach 1 kg/s during the 2-day CME passage. By analogy, we suggest that CME-related sputtering increases might also be expected during a CME passage by a near-earth asteroid or at the Mars exobase, resulting in an enhanced loss of material
    corecore