669 research outputs found

    Do method and species lifestyle affect measures of maximum metabolic rate in fish?

    Get PDF
    The rate at which active animals can expend energy is limited by their maximum aerobic metabolic rate (MMR). Two methods are commonly used to estimate MMR as oxygen uptake in fishes, namely during prolonged swimming or immediately following brief exhaustive exercise, but it is unclear whether they return different estimates of MMR or whether their effectiveness for estimating MMR varies among species with different lifestyles. A broad comparative analysis of MMR data from 121 fish species revealed little evidence of different results between the two methods, either for fishes in general or for species of benthic, benthopelagic or pelagic lifestyles

    A Note on the Knossos Mc tablets

    Get PDF
    The paper discusses the possibility that two of the Linear B records classed as Mc at Knossos date from a different phase (or different phases) in the history of the palace from the remaining records of their type.L'article discuteix la possibilitat que dos dels documents en Lineal B classificats com Mc a Knossos es remuntin a una o diverses fases de la història del palau diferents d'aquella a la qual pertanyen la resta de documents d'aquesta mena

    Does individual variation in metabolic phenotype predict fish behaviour and performance?

    Get PDF
    There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best-studied examples. After accounting for variation due to other factors, there can typically be a two to three-fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk-taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context-dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS

    Long life reliability thermal control systems study

    Get PDF
    The results of a program undertaken to conceptually design and evaluate a passive, high reliability, long life thermal control system for space station application are presented. The program consisted of four steps: (1) investigate and select potential thermal system elements; (2) conceive, evaluate and select a thermal control system using these elements; (3) conduct a verification test of a prototype segment of the selected system; and (4) evaluate the utilization of waste heat from the power supply. The result of this project is a conceptual thermal control system design which employs heat pipes as primary components, both for heat transport and temperature control. The system, its evaluation, and the test results are described

    A Concept for Small, Remotely Operated, Coronagraph located at Small Observatory to Obtain Frequent Low-cost Remote Observations of the Lunar Exosphere and the Mercurian Tail

    Get PDF
    The sodium in the lunar exosphere is a marker species for studying the lunar exosphere because the element possesses two strong resonance transitions from the ground state whose wavelengths fall in the visible spectrum near 590 nm. Emissions at these wavelengths are thus, observable from Earth. Observations have shown that the exosphere responds in a complex way to the external processes (impact vaporization, sputtering, and photon stimulated desorption) that weather the lunar regolith to produce the sodium. Unraveling the sodium production allows us to study the processes that weather the regolith. Obtaining the extensive time sequence of observations required to unravel the sources of sodium using conventional observatories is impractical, and too expensive. Effectively imaging the lunar sodium exosphere dose to the Moon requires an off-axis rejection of scattered light that can only be obtained with a coronagraph. A related problem. the observation of the sodium tail of Mercury, can be addressed as well only by coronagraphic observations. We present here a concept for a small, rugged coronagraph sited at an observatory dedicated to remote robotic observing (the Winer Observatory in Sonoita Arizona) that can obtain the quality and quantity of lunar sodium observations needed to answer these questions. The design uses Commercial Off the Shelf Technology (COTS). If this facility is operational by 2013. the observations will be concurrent with the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission

    Observation of Neutral Sodium Above Mercury During the Transit of November 8, 2006

    Get PDF
    We mapped the absorption of sunlight by sodium vapor in the exosphere of Mercury during the transit of Mercury on November 8, 2006, using the IBIS Interferometric BIdimensional Spectrometer at the Dunn Solar Telescope operated by the National Solar Observatory at Sunspot, New Mexico. The measurements were reduced to line-of-sight equivalent widths for absorption at the sodium D2 line around the shadow of Mercury. The sodium absorption fell off exponentially with altitude up to about 600 km. However there were regions around north and south polar-regions where relatively uniform sodium absorptions extended above 1000 km. We corrected the 0-600 km altitude profiles for seeing blur using the measured point spread function. Analysis of the corrected altitude distributions yielded surface densities, zenith column densities, temperatures and scale heights for sodium all around the planet. Sodium absorption on the dawn side equatorial terminator was less than on the dusk side, different from previous observations of the relative absorption levels. We also determined Earthward velocities for sodium atoms, and line widths for the absorptions. Earthward velocities resulting from radiation pressure on sodium averaged 0.8 km/s, smaller than a prediction of 1.5 km/s. Most line widths were in the range of 20 mA after correction for instrumental broadening, corresponding to temperatures in the range of 1000 K

    What Will LADEE Tell Us About the Lunar Atmosphere?

    Get PDF
    The only species that have been confirmed in the lunar exosphere are Na, K, Ar, and He. However, models for the production and loss of lunar regolith-derived exospheric species from source processes including micrometeoroid impact vaporization, sputtering, and, for Na and K, photon-stimulated desorption, predict a host of other species should exist in the lunar exosphere. Assuming that loss processes are limited to ballistic escape, photoionization, and recycling to the surface, we have computed column abundances and compared them to published upper limits from the Moon and to detected abundances from Mercury. Our results suggest that available measurements often do not constrain models, and underline the need for improved spectroscopic measurements of the lunar exosphere. Such investigations are planned by the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. Our calculations indicate that LADEE measurements promise to make definitive observations or set stringent upper limits for all regolith-driven exospheric species because of their favorable signal to noise ratio. Our models, along with LADEE observations, will constrain assumed model parameters for the Moon, such as sticking coefficients, source processes, and velocity distributions

    Lunar Ion Transport Near Magnetic Anomalies: Possible Implications for Swirl Formation

    Get PDF
    The bright swirling features on the lunar surface in areas around the Moon but most prominently at Reiner Gamma, have intrigued scientists for many years. After Apollo and later Lunar Prospector (LP} mapped the Lunar magnetic fields from orbit, it was observed that these features are generally associated with crustal magnetic anomalies. This led researchers to propose a number of explanations for the swirls that invoke these fields. Prominent among these include magnetic shielding in the form of a mini-magnetosphere which impedes space weathering by the solar wind, magnetically controlled dust transport, and cometary or asteroidal impacts that would result in shock magnetization with concomitant formation ofthe swirls. In this presentation, we will consider another possibility, that the ambient magnetic and electric fields can transport and channel secondary ions produced by micrometeorite or solar wind ion impacts. In this scenario, ions that are created in these impacts are under the influence of these fields and can drift for significant distances before encountering the magnetic anomalies when their trajectories are disrupted and concentrated onto nearby areas. These ions may then be responsible for chemical alteration of the surface leading either to a brightening effect or a disruption of space weathering processes. To test this hypothesis we have run ion trajectory simulations that show ions from regions about the magnetic anomalies can be channeled into very small areas near the anomalies and although questions remain as to nature of the mechanisms that could lead to brightening of the surface it appears that the channeling effect is consistent with the existence of the swirls

    The Discharging of Roving Objects in the Lunar Polar Regions

    Get PDF
    In 2007, the National Academy of Sciences identified the lunar polar regions as special environments: very cold locations where resources can be trapped and accumulated. These accumulated resources not only provide a natural reservoir for human explorers, but their very presence may provide a history of lunar impact events and possibly an indication of ongoing surface reactive chemistry. The recent LCROSS impacts confirm that polar crater floors are rich in material including approx 5%wt of water. An integral part of the special lunar polar environment is the solar wind plasma. Solar wind protons and electrons propagate outward from the Sun, and at the Moon's position have a nominal density of 5 el/cubic cm, flow speed of 400 km/sec, and temperature of 10 eV (approx. equal 116000K). At the sub-solar point, the flow of this plasma is effectively vertically incident at the surface. However, at the poles and along the lunar terminator region, the flow is effectively horizontal over the surface. As recently described, in these regions, local topography has a significant effect on the solar wind flow. Specifically, as the solar wind passes over topographic features like polar mountains and craters, the plasma flow is obstructed and creates a distinct plasma void in the downstream region behind the obstacle. An ion sonic wake structure forms behind the obstacle, not unlike that which forms behind a space shuttle. In the downstream region where flow is obstructed, the faster moving solar wind electrons move into the void region ahead of the more massive ions, thereby creating an ambipolar electric field pointing into the void region. This electric field then deflects ion trajectories into the void region by acting as a vertical inward force that draws ions to the surface. This solar wind 'orographic' effect is somewhat analogous to that occurring with terrestrial mountains. However, in the solar wind, the ambipolar E-field operating in the collision less plasma replaces the gradient in pressure that would act in a collisional neutral gas. Human systems (roving astronauts or robotic systems created by humans) may be required to gain access to the crater floor to collect resources such as water and other cold-trapped material. However, these human systems are also exposed to the above-described harsh thermal and electrical environments in the region. Thus, the objective of this work is to determine the nature of charging and discharging for a roving object in the cold, plasma-starved lunar polar regions. To accomplish this objective, we first define the electrical charging environment within polar craters. We then describe the subsequent charging of a moving object near and within such craters. We apply a model of an astronaut moving in periodic steps/cadence over a surface regolith. In fact the astronaut can be considered an analog for any kind of moving human system. An astronaut stepping over the surface accumulates charge via contact electrification (tribocharging) v.lith the lunar regolith. We present a model of this tribo-charge build-up. Given the environmental plasma in the region, we determine herein the dissipation time for the astronaut to bleed off its excess charge into the surrounding plasma
    corecore