1,200 research outputs found

    The flywheel effect: Ionospheric currents after a geomagnetic storm

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95263/1/grl5685.pd

    An event study to provide validation of TING and CMIT geomagnetic middle-latitude electron densities at the F2 peak

    Get PDF
    [1] The coupled thermosphere-ionosphere magnetosphere (CMIT) model and the Thermosphere Ionosphere Nested Grid (TING) model have been run to simulate the 15 May 1997 interplanetary coronal mass ejection\u27s (ICME) effects on the Earth\u27s ionosphere and thermosphere. Comparisons were made between these model runs, the IRI-2007 model, and geomagnetic middle-latitude ionosonde data (NmF2) from the World Data Center to determine how well the models simulated the event and to understand the causes of model-data disagreement. The following conclusions were drawn from this study: (1) skill scores were more often negative than positive on average; (2) the best and the worst skill scores occurred on the recovery day; (3) the line plots comparing models to data look better than the skill scores might suggest; (4) skill scores are significantly affected by timing issues and large, short-duration variability; (5) skill scores give an indication of the relative ability of one model relative to another, rather than an absolute statement of model accuracy; (6) the models capture negative storm effects better than they capture positive storm effects; (7) the TING model captured many short duration features seen in the data at high middle latitude stations that result from changes in the size of the auroral oval; (8) CMIT overestimates the energy driving changes in NmF2, whereas TING provides approximately the correct energy input as a result of the saturation effects on potential that are included in TING; and (9) both TING and CMIT electron densities decreased too rapidly after sunset

    CEDAR: An aeronomy initiative

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95053/1/eost6429.pd

    Eliminating Malaria Vectors.

    Get PDF
    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations

    Large Enhancements in the O/N2 Ratio in the Evening Sector of the Winter Hemisphere During Geomagnetic Storms

    Get PDF
    In this paper, we have looked for enhancements of the O/N2 ratio in data measured by the Dynamics Explorer 2 (DE 2) satellite in the middle latitudes of the winter hemisphere, based on a prediction that was made by the National Center for Atmospheric Research thermosphere/tonosphere general circulation model (NCAR-TIGCM) that such increases occur. The NCAR-TIGCM predicts that these enhancements should be seen throughout the low latitude region and in many middle latitude locations, but that the enhancements in O/N2 are particularly strong in the middle-latitude, evening-to-midnight sector of the winter hemisphere. When this prediction was used to look for these effects in DE 2 NACS (neutral atmosphere composition spectrometer) data, large enhancements in the O/N2 ratio (approx. 50 to 90%) were seen. These enhancements were observed during the main phase of a storm that occurred on November 24, 1982, and were seen in the same region of the winter hemisphere predicted by the NCAR-TIGCM. They are partially the result of the depletion of N2 and, as electron loss is dependent on dissociative recombination at F(sub 2) altitudes, they have implications for electron densities in this area. Parcel trajectories, which have been followed through the NCAR-TIGCM history file for this event, show that large O/N2 enhancements occur in this limited region in the winter hemisphere for two reasons. First, these parcels of air are decelerated by the antisunward edge of the ion convection pattern; individual parcels converge and subsidence occurs. Thus molecular-nitrogen-poor air is brought from higher to lower heights. Because neutral parcels that are found a little poleward of the equatorial edge of the eveningside convection pattern are swept inward toward the center of the auroral oval, the enhancements occur only in a very limited range of latitudes. Second, nitrogen-poor air is transported from regions close to the magnetic pole in the winter hemisphere. During geomagnetic storms, enhanced meridional winds are driven by the increased pressure-gradient force that is associated with intensified Joule heating in the auroral oval. These pressure-driven winds decrease rapidly on the dayside beyond the auroral oval where the parcels originate, limiting the region into which the parcels can be transported. Thus these two processes drive values of O/N2 in a limited region of the winter hemisphere, and reinforce only in the evening sector, causing large changes in this region

    Space‐time analysis of TIMED Doppler Interferometer (TIDI) measurements

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95273/1/grl12774.pd

    The Effects of Neutral Inertia on Ionospheric Currents in the High-Latitude Thermosphere Following a Geomagnetic Storm

    Get PDF
    Results of an experimental and theoretical investigation into the effects of the time dependent neutral wind flywheel on high-latitude ionospheric electrodynamics are presented. The results extend our previous work which used the National Center for Atmospheric Research Thermosphere/Ionosphere General Circulation Model (NCAR TIGCM) to theoretically simulate flywheel effects in the aftermath of a geomagnetic storm. The previous results indicated that the neutral circulation, set up by ion-neutral momentum coupling in the main phase of a geomagnetic storm, is maintained for several hours after the main phase has ended and may dominate height-integrated Hall currents and field-aligned currents for up to 4-5 hours. We extend the work of Deng et al. to include comparisons between the calculated time-dependent ionospheric Hall current system in the storm-time recovery period and that measured by instruments on board the Dynamics Explorer 2 (DE 2) satellite. Also, comparisons are made between calculated field-aligned currents and those derived from DE 2 magnetometer measurements. These calculations also allow us to calculate the power transfer rate (sometimes called the Poynting flux) between the magnetosphere and ionosphere. The following conclusions have been drawn: (1) Neutral winds can contribute significantly to the horizontal ionospheric current system in the period immediately following the main phase of a geomagnetic storm, especially over the magnetic polar cap and in regions of ion drift shear. (2) Neutral winds drive Hall currents that flow in the opposite direction to those driven by ion drifts. (3) The overall morphology of the calculated field-aligned current system agrees with previously published observations for the interplanetary magnetic field (IMF) B(sub Z) southward conditions, although the region I and region 2 currents are smeared by the TI(ICM model grid resolution. (4) Neutral winds can make significant contributions to the field-aligned current system when B(sub Z) northward conditions prevail following the main phase of a storm, but can account for only a fraction of the observed currents. (5) DE 2 measurements provide a demonstration of "local" (satellite-altitude) flywheel effects. (6) On the assumption that the magnetosphere acts as an insulator, we calculate neutral-wind-induced polarization electric fields of approx. 20-30 kV in the period immediately following the geomagnetic storm

    Neutral motions in the polar thermosphere for northward interplanetary magnetic field

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94648/1/grl2865.pd

    Geomagnetic Storm Effects in the Low- to Middle-Latitude Upper Thermosphere

    Get PDF
    In this paper, we use data from the Dynamics Explorer 2 (DE 2) satellite and a theoretical simulation made by using the National Center for Atmospheric Research thermosphere/ionosphere general circulation model (NCAR-TIGCM) to study storm-induced changes in the structure of the upper thermosphere in the low- to middle-latitude (20 deg-40 deg N) region of the winter hemisphere. Our principal results are as follows: (1) The winds associated with the diurnal tide weaken during geomagnetic storms, causing primarily zonally oriented changes in the evening sector, few changes in the middle of the afternoon, a combination of zonal and meridional changes in the late morning region, and mainly meridional changes early in the morning; (2) Decreases in the magnitudes of the horizontal winds associated with the diurnal tide lead to a net downward tendency in the vertical winds blowing through a constant pressure surface; (3) Because of these changes in the vertical wind, there is an increase in compressional heating (or a decrease in cooling through expansion), and thus temperatures in the low- to middle-latitudes of the winter hemisphere increase; (4) Densities of all neutral species increase on a constant height surface, but the pattern of changes in the O/N2 ratio is not well ordered on these surfaces; (5) The pattern of changes in the O/N2 ratio is better ordered on constant pressure surfaces. The increases in this ratio on constant pressure surfaces in the low- to middle-latitude, winter hemisphere are caused by a more downward tendency in the vertical winds that blow through the constant pressure surfaces. Nitrogen-poor air is then advected downward through the pressure surface, increasing the O/N2 ratio; (6) The daytime geographical distribution of the modeled increases in the O/N2 ratio on a constant pressure surface in the low- to middle-latitudes of the winter hemisphere correspond very closely with those of increases in the modeled electron densities at the F2 peak
    corecore