123 research outputs found

    Measuring photon-photon interactions via photon detection

    Full text link
    The strong non-linearity plays a significant role in physics, particularly, in designing novel quantum sources of light and matter as well as in quantum chemistry or quantum biology. In simple systems, the photon-photon interaction can be determined analytically. However, it becomes challenging to obtain it for more compex systems. Therefore, we show here how to measure strong non-linearities via allowing the sample to interact with a weakly pumped quantized leaking optical mode. We found that the detected mean-photon number versus pump-field frequency shows several peaks. Interestingly, the interval between neighbour peaks equals the photon-photon interaction potential. Furthermore, the system exhibits sub-Poissonian photon statistics, entanglement and photon switching with less than one photon. Finally, we connect our study with existing related experiments.Comment: 4 pages, 3 figure

    Field-emitter bound states in structured thermal reservoirs

    Get PDF
    We derive a master equation for a two-level emitter interacting with a band-gap reservoir at finite temperatures. This equation is able to capture effects of emitter-reservoir entanglement. We show that the entangled field-emitter bound state, which arises in the process of interaction, does not survive indefinitely at finite temperatures. However, such an entangled state may be effectively excited through an intensive incoherent driving.75

    Asymmetric universal entangling machine

    Full text link
    We give a definition of asymmetric universal entangling machine which entangles a system in an unknown state to a specially prepared ancilla. The machine produces a fixed state-independent amount of entanglement in exchange to a fixed degradation of the system state fidelity. We describe explicitly such a machine for any quantum system having dd levels and prove its optimality. We show that a d2d^2-dimensional ancilla is sufficient for reaching optimality. The introduced machine is a generalization to a number of widely investigated universal quantum devices such as the symmetric and asymmetric quantum cloners, the symmetric quantum entangler, the quantum information distributor and the universal-NOT gate.Comment: 28 pages, 3 figure

    Non-perturbative gluon evolution, squeezing, correlations and chaos in jets

    Get PDF
    We study evolution of colour gluon states in isolated QCD jet at the non-perturbative stage. Fluctuations of gluons are less than those for coherent states under specific conditions. This fact suggests that there gluon squeezed states can arise. The angular and rapidity dependencies of the normalized second-order correlation function for present gluon states are studied at this stage of jet evolution. It is shown that these new gluon states can have both sub-Poissonian and super-Poissonian statistics corresponding to, respectively, antibunching and bunching of gluons by analogy with squeezed photon states. We investigate the possibility of coexisting both squeezing and chaos using Toda criterion and temporal correlator analysis. It is shown that these effects may coexist under some conditions.Comment: 18 pages, 3 figures, Reported on IPPP Workshop on Multiparticle Production in QCD Jets (University of Durham, Durham, UK, 12-15 December 2001
    corecore