107 research outputs found

    Rifampicin inhibits neurodegeneration in the optic nerve transection model in vivo and after 1-methyl-4-phenylpyridinium intoxication in vitro

    Get PDF
    Rifampicin is an antibacterial drug which is highly effective in the treatment of tuberculosis and leprosy. It has been shown to exert antioxidative as well as anti-apoptotic effects. In this study, the neuroprotective effect of rifampicin was examined after 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic cell death in vitro, and on the survival of retinal ganglion cells after optic nerve transection in vivo. Rifampicin administration significantly increased the number of surviving dopaminergic neurons after MPP+ intoxication as compared to control cultures. No cytotoxic effects were noted even at final rifampicin concentrations of 100μM. In the rifampicin-treated group, retinal ganglion cell survival was significantly increased after axotomy as compared with vehicle-treated and phosphate-buffered saline-treated control animals. These results suggest that rifampicin is able to prevent neuronal degeneration in cell death paradigms involving oxidative stress and activation of apoptotic pathways. It may thus play a role in the future treatments of neurodegenerative disorder

    VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena

    Get PDF
    Therapeutic angiogenesis with vascular endothelial growth factor (VEGF) is a clinically promising strategy in ischaemic disease. The pathophysiological consequences of enhanced vessel formation, however, are poorly understood. We established mice overexpressing human VEGF165 under a neuron-specific promoter, which exhibited an increased density of brain vessels under physiological conditions and enhanced angiogenesis after brain ischaemia. Following transient intraluminal middle cerebral artery (MCA) occlusions, VEGF overexpression significantly alleviated neurological deficits and infarct volume, and reduced disseminated neuronal injury and caspase-3 activity, confirming earlier observations that VEGF has neuroprotective properties. Brain swelling was not influenced in VEGF-overexpressing animals, while sodium fluorescein extravasation was moderately increased, suggesting that VEGF induces a mild blood-brain barrier leakage. To elucidate whether enhanced angiogenesis improves regional cerebral blood flow in the ischaemic brain, [14C]iodoantipyrine autoradiography was performed. Autoradiographies revealed that VEGF induces haemodynamic steal phenomena with reduced blood flow in ischaemic areas and increased flow values only outside the MCA territory. Our data demonstrate that VEGF protects neurons from ischaemic cell death by a direct action rather than by promoting angiogenesis, and suggest that strategies aiming at increasing vascular density in the whole brain, e.g. by VEGF overexpression, may worsen rather than improve cerebral haemodynamics after strok

    Vascular endothelial growth factor induces contralesional corticobulbar plasticity and functional neurological recovery in the ischemic brain

    Get PDF
    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor, which also has neuroprotective activity. In view of these dual actions on vessels and neurons, we were interested whether VEGF promotes long distance axonal plasticity in the ischemic brain. Herein, we show that VEGF promotes neurological stroke recovery in mice when delivered in a delayed way starting 3 days after middle cerebral artery occlusion. Using anterograde tract-tracing experiments that we combined with histochemical and molecular biological studies, we demonstrate that although VEGF promoted angiogenesis predominantly in the ischemic hemisphere, pronounced axonal sprouting was induced by VEGF in the contralesional, but not the ipsilesional corticobulbar system. Corticobulbar plasticity was accompanied by the deactivation of the matrix metalloproteinase MMP9 in the lesioned hemisphere and the transient downregulation of the axonal growth inhibitors NG2 proteoglycan and brevican and the guidance molecules ephrin B1/2 in the contralesional hemisphere. The regulation of matrix proteinases, growth inhibitors, and guidance molecules offers insights how brain plasticity is controlled in the ischemic brain

    Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms

    Get PDF
    Recent evidence suggests that neural stem/precursor cells (NPCs) promote recovery in animal models with delayed neuronal death via a number of indirect bystander effects. A comprehensive knowledge of how transplanted NPCs exert their therapeutic effects is still lacking. Here, we investigated the effects of a delayed transplantation of adult syngenic NPCs—injected intravenously 72 h after transient middle cerebral artery occlusion—on neurological recovery, histopathology and gene expression. NPC-transplanted mice showed a significantly improved recovery from 18 days post-transplantation (dpt) onwards, which persisted throughout the study. A small percentage of injected NPCs accumulated in the brain, integrating mainly in the infarct boundary zone, where most of the NPCs remained undifferentiated up to 30 dpt. Histopathological analysis revealed a hitherto unreported very delayed neuroprotective effect of NPCs, becoming evident at 10 and 30 dpt. Tissue survival was associated with downregulation of markers of inflammation, glial scar formation and neuronal apoptotic death at both mRNA and protein levels. Our data highlight the relevance of very delayed degenerative processes in the stroke brain that are intimately associated with inflammatory and glial responses. These processes may efficaciously be antagonized by (stem) cell-based strategies at time-points far beyond established therapeutic windows for pharmacological neuroprotectio

    Lithium promotes long-term neurological recovery after spinal cord injury in mice by enhancing neuronal survival, gray and white matter remodeling, and long-distance axonal regeneration

    Get PDF
    Spinal cord injury (SCI) induces neurological deficits associated with long-term functional impairments. Since the current treatments remain ineffective, novel therapeutic options are needed. Besides its effect on bipolar mood disorder, lithium was reported to have neuroprotective activity in different neurodegenerative conditions, including SCI. In SCI, the effects of lithium on long-term neurological recovery and neuroplasticity have not been assessed. We herein investigated the effects of intraperitoneally administered lithium chloride (LiCl) on motor coordination recovery, electromyography (EMG) responses, histopathological injury and remodeling, and axonal plasticity in mice exposed to spinal cord transection. At a dose of 0.2, but not 2.0 mmol/kg, LiCl enhanced motor coordination and locomotor activity starting at 28 days post-injury (dpi), as assessed by a set of behavioral tests. Following electrical stimulation proximal to the hemitransection, LiCl at 0.2 mmol/kg decreased the latency and increased the amplitude of EMG responses in the denervated hindlimb at 56 dpi. Functional recovery was associated with reduced gray and white matter atrophy rostral and caudal to the hemitransection, increased neuronal survival and reduced astrogliosis in the dorsal and ventral horns caudal to the hemitransection, and increased regeneration of long-distance axons proximal and distal to the lesion site in mice receiving 0.2 mmol/kg, but not 2 mmol/kg LiCl, as assessed by histochemical and immunohistochemical studies combined with anterograde tract tracing. Our results indicate that LiCl induces long-term neurological recovery and neuroplasticity following SCI.TUBA ; Istanbul Medipol University ; Turkish Academy of Science

    TAT fusion proteins as innovative treatment strategy in stroke

    No full text

    Rifampicin inhibits neurodegeneration in the optic nerve transection model in vivo and after 1-methyl-4-phenylpyridinium intoxication in vitro

    Full text link
    Rifampicin is an antibacterial drug which is highly effective in the treatment of tuberculosis and leprosy. It has been shown to exert antioxidative as well as anti-apoptotic effects. In this study, the neuroprotective effect of rifampicin was examined after 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic cell death in vitro, and on the survival of retinal ganglion cells after optic nerve transection in vivo. Rifampicin administration significantly increased the number of surviving dopaminergic neurons after MPP+ intoxication as compared to control cultures. No cytotoxic effects were noted even at final rifampicin concentrations of 100μM. In the rifampicin-treated group, retinal ganglion cell survival was significantly increased after axotomy as compared with vehicle-treated and phosphate-buffered saline-treated control animals. These results suggest that rifampicin is able to prevent neuronal degeneration in cell death paradigms involving oxidative stress and activation of apoptotic pathways. It may thus play a role in the future treatments of neurodegenerative disorder

    Wood and bark volatile compounds of Laurus nobilis L.

    No full text
    WOS: 000240144000010Wood and bark parts of Laurus nobilis L. were extracted with two different methods to determine the volatile compounds. They were analyzed with GC/MS. Monoterpenes were determined as the principal group of the bark volatiles whereas sesquiterpenes are the main components in wood extractives. The main compounds in bark are 1.8-cineol and eugenol, while dehydrocostunolide in the wood extract

    Buprenorphine does not aggrevate ischemic neuronal injury in experimental focal cerebral ischemia

    No full text
    Buprenorphine has been increasingly used as maintenance therapy in opioid dependence as an alternative to methadone and other pharmacological therapies. However, available data suggest increased risk of cerebrovascular events in opioid-dependent patients. Therefore, an opioid that provides safety with regard to neurological function should be considered by opioid-dependent patients. The evidence for the in vitro neurotoxic effects of buprenorphine is rapidly increasing. In order to clarify whether buprenorphine is also neurotoxic under the condition of cerebral ischemia in vivo, we applied an acute dose of buprenorphine in a transient model of focal cerebral ischemia in rats. Our study provides preclinical evidence for the usage of buprenorphine during the postoperative period following ischemic events as well as for the maintenance therapy of opioid-dependent patients wherein the risk of cerebrovascular events is increased

    Influences of Propofol-Remifentanil and Propofol-Epidural Anesthesia Combination on Dynamic Respiratory Tests in Laparoscopic Morbid Obesity Surgery

    No full text
    Objectives: Morbid obesity (MO) is an important risk factor for respiratory diseases. The aim of this study changes are observed between the preoperative and postoperative pulmonary functions of morbid obese patients undergoing laparoscopic sleeve gastrectomy with propofol-remifentanil infusion anesthesia(TIPA) and propofol-epidural anesthesia(EDIPA) under BIS control. Methods: A total of 52 patients who were to undergo sleeve gastrectomy for MO were divided into two groups for this prospective randomized double-blind study. Propofol infusion was administered to both groups (initial dose 10 mg kg hour); the bispectral index (BIS) was maintained between 40-50 for the maintenance dose, and the hemodynamic parameters were considered. Remifentanil was administered at a dose of 25 ughour via TCA (target controlled analgesia) pump in Group P. In Group E, additionally, 0.0125% bupivacaine was administered with the TCA device at a dose of 8 ml/hour via the epidural route. PFT was performed 4 hours preoperatively and at the 4th hour beginning from the time when the postoperative modified Aldrete scores (MAS) were 9. Results: MAS time and the amount of propofol used were found to be significantly lower in postoperative period in Group E. FEV1 and FVC were found to be significantly higher in the postoperative period in Group E. Conclusion: PFT is better in the early postoperative period in cases whom epidural anesthesia is administered
    corecore