137 research outputs found

    The Impact of Multidrug-Resistant Organisms on Outcomes in Patients with Diabetic Foot Infections

    Get PDF
    Background. Multidrug-resistant organisms (MDROs) are important diabetic foot infection (DFI) pathogens. This study evaluated the impact of DFIs associated with MDRO pathogens (DFI-MDRO) on clinical outcomes. Methods. Adults admitted to Detroit Medical Center from January 2012 to December 2015 with culture-positive DFI were included. Associations between outcomes and DFI-MDRO (evaluated as a single group that included methicillin-resistant Staphylococcus aureus [MRSA], vancomycin-resistant enterococci, Enterobacteriaceae resistant to third-generation cephalosporin [3GCR-EC], Acinetobacter baumannii, and Pseudomonas aeruginosa) were analyzed. Outcomes included above- and below-knee lower extremity amputation (LEA), readmissions, and mortality within a year after DFI. A propensity score predicting the likelihood of having DFI-MDRO was computed by comparing patients with DFI-MDRO with patients with DFI with non-MDRO pathogens (DFI-non-MDRO). Using conditional logistic regression, DFI-MDRO was analyzed as an independent variable after patients in the MDRO and non-MDRO groups were matched by propensity score. Results. Six hundred forty-eight patients were included, with a mean age ± SD of 58.4 ± 13.7. Most patients in the cohort presented with chronic infection (75%). DFI-MDRO occurred in greater than one-half of the cohort (n = 364, 56%), and MRSA was the most common MDRO (n = 224, 62% of the DFI-MDRO group). In propensity-matched analyses, DFI-MDRO was not associated with 1-year LEA or readmissions, but was associated with recurrent DFI episodes (odds ratio, 2.1; 95% confidence interval, 1.38–3.21). Conclusions. DFI-MDRO was associated with a 2-fold increased risk of recurrent DFI compared with patients with DFI-non-MDRO

    Epidemiology of Diabetic Foot Infection in the Metro-Detroit Area with a Focus on Independent Predictors for Pathogens Resistant to Recommended Empiric Antimicrobial Therapy

    Get PDF
    Background. The polymicrobial nature of diabetic foot infection (DFI) and the emergence of antimicrobial resistance have complicated DFI treatment. Current treatment guidelines for deep DFI recommend coverage of methicillin-resistant Staphylococcus aureus (MRSA) and susceptible Enterobacteriaceae. This study aimed to describe the epidemiology of DFI and to identify predictors for DFI associated with multidrug-resistant organisms (MDROs) and pathogens resistant to recommended treatment (PRRT). Methods. Adult patients admitted to Detroit Medical Center from January 2012 to December 2015 with DFI and positive cultures were included. Demographics, comorbidities, microbiological history, sepsis severity, and antimicrobial use within 3 months before DFI were obtained retrospectively. DFI-PRRT was defined as a DFI associated with a pathogen resistant to both vancomycin and ceftriaxone. DFI-MDRO pathogens included MRSA in addition to PRRT. Results. Six-hundred forty-eight unique patients were included, with a mean age of 58.4 ± 13.7 years. DFI-MDRO accounted for 364 (56%) of the cohort, and 194 (30%) patients had DFI-PRRT. Independent predictors for DFI-PRRT included history of PRRT in a diabetic foot ulcer, antimicrobial exposure in the prior 90 days, peripheral vascular disease, and chronic kidney disease. Long-term care facility residence was independently associated with DFI due to ceftriaxone-resistant Enterobacteriaceae, and recent hospitalization was an independent predictor of DFI due to vancomycin-resistant Enterococcus. Conclusions. An unexpectedly high prevalence of DFI-PRRT pathogens was identified. History of the same pathogen in a prior diabetic foot ulcer and recent antimicrobial exposure were independent predictors of DFI-PRRT and should be considered when selecting empiric DFI therapy

    Hypoxia-Induced Down-Regulation of Neprilysin by Histone Modification in Mouse Primary Cortical and Hippocampal Neurons

    Get PDF
    Amyloid β-peptide (Aβ) accumulation leads to neurodegeneration and Alzheimer's disease (AD). Aβ metabolism is a dynamic process in the Aβ production and clearance that requires neprilysin (NEP) and other enzymes to degrade Aβ. It has been reported that NEP expression is significantly decreased in the brain of AD patients. Previously we have documented hypoxia is a risk factor for Aβ generation in vivo and in vitro through increasing Aβ generation by altering β-cleavage and γ-cleavage of APP and down-regulating NEP, and causing tau hyperphosphorylation. Here, we investigated the molecular mechanisms of hypoxia-induced down-regulation of NEP. We found a significant decrease in NEP expression at the mRNA and protein levels after hypoxic treatment in mouse primary cortical and hippocampal neurons. Chromatin immunoprecipitation (ChIP) assays and relative quantitative PCR (q-PCR) revealed an increase of histone H3-lysine9 demethylation (H3K9me2) and a decrease of H3 acetylation (H3-Ace) in the NEP promoter regions following hypoxia. In addition, we found that hypoxia caused up-regulation of histone methyl transferase (HMT) G9a and histone deacetylases (HDACs) HDAC-1. Decreased expression of NEP during hypoxia can be prevented by application with the epigenetic regulators 5-Aza-2′-deoxycytidine (5-Aza), HDACs inhibitor sodium valproate (VA), and siRNA-mediated knockdown of G9a or HDAC1. DNA methylation PCR data do not support that hypoxia affects the methylation of NEP promoters. This study suggests that hypoxia may down-regulate NEP by increasing H3K9me2 and decreasing H3-Ace modulation

    Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes

    Get PDF
    Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.Massachusetts Institute of Technology. Faculty Discretionary Research FundNational Institutes of Health (U.S.) (Award UL1 RR 025758)Harvard Catalyst (Grant

    Development of a New Tacaribe Arenavirus Infection Model and Its Use to Explore Antiviral Activity of a Novel Aristeromycin Analog

    Get PDF
    Background A growing number of arenaviruses can cause a devastating viral hemorrhagic fever (VHF) syndrome. They pose a public health threat as emerging viruses and because of their potential use as bioterror agents. All of the highly pathogenic New World arenaviruses (NWA) phylogenetically segregate into clade B and require maximum biosafety containment facilities for their study. Tacaribe virus (TCRV) is a nonpathogenic member of clade B that is closely related to the VHF arenaviruses at the amino acid level. Despite this relatedness, TCRV lacks the ability to antagonize the host interferon (IFN) response, which likely contributes to its inability to cause disease in animals other than newborn mice. Methodology/Principal Findings Here we describe a new mouse model based on TCRV challenge of AG129 IFN-α/β and -γ receptor-deficient mice. Titration of the virus by intraperitoneal (i.p.) challenge of AG129 mice resulted in an LD50 of ∼100 fifty percent cell culture infectious doses. Virus replication was evident in the serum, liver, lung, spleen, and brain 4–8 days after inoculation. MY-24, an aristeromycin derivative active against TCRV in cell culture at 0.9 µM, administered i.p. once daily for 7 days, offered highly significant (P\u3c0.001) protection against mortality in the AG129 mouse TCRV infection model, without appreciably reducing viral burden. In contrast, in a hamster model of arenaviral hemorrhagic fever based on challenge with clade A Pichinde arenavirus, MY-24 did not offer significant protection against mortality. Conclusions/Significance MY-24 is believed to act as an inhibitor of S-adenosyl-L-homocysteine hydrolase, but our findings suggest that it may ameliorate disease by blunting the effects of the host response that play a role in disease pathogenesis. The new AG129 mouse TCRV infection model provides a safe and cost-effective means to conduct early-stage pre-clinical evaluations of candidate antiviral therapies that target clade B arenaviruses

    Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    Get PDF
    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code

    Fleas as parasites of the family Canidae

    Get PDF
    Historically, flea-borne diseases are among the most important medical diseases of humans. Plague and murine typhus are known for centuries while the last years brought some new flea-transmitted pathogens, like R. felis and Bartonella henselae. Dogs may play an essential or an accidental role in the natural transmission cycle of flea-borne pathogens. They support the growth of some of the pathogens or they serve as transport vehicles for infected fleas between their natural reservoirs and humans. More than 15 different flea species have been described in domestic dogs thus far. Several other species have been found to be associated with wild canids. Fleas found on dogs originate from rodents, birds, insectivores and from other Carnivora. Dogs therefore may serve as ideal bridging hosts for the introduction of flea-borne diseases from nature to home. In addition to their role as ectoparasites they cause nuisance for humans and animals and may be the cause for severe allergic reactions

    Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy

    Get PDF
    Heritable changes in gene expression that are not based upon alterations in the DNA sequence are defined as epigenetics. The most common mechanisms of epigenetic regulation are the methylation of CpG islands within the DNA and the modification of amino acids in the N-terminal histone tails. In the last years, it became evident that the onset of cancer and its progression may not occur only due to genetic mutations but also because of changes in the patterns of epigenetic modifications. In contrast to genetic mutations, which are almost impossible to reverse, epigenetic changes are potentially reversible. This implies that they are amenable to pharmacological interventions. Therefore, a lot of work in recent years has focussed on the development of small molecule enzyme inhibitors like DNA-methyltransferase inhibitors or inhibitors of histone-modifying enzymes. These may reverse misregulated epigenetic states and be implemented in the treatment of cancer or other diseases, e.g., neurological disorders. Today, several epigenetic drugs are already approved by the FDA and the EMEA for cancer treatment and around ten histone deacetylase (HDAC) inhibitors are in clinical development. This review will give an update on recent clinical trials of the HDAC inhibitors used systemically that were reported in 2009 and 2010 and will present an overview of different biomarkers to monitor the biological effects

    Girls' disruptive behavior and its relationship to family functioning: A review

    Get PDF
    Although a number of reviews of gender differences in disruptive behavior and parental socialization exist, we extend this literature by addressing the question of differential development among girls and by placing both disruptive behavior and parenting behavior in a developmental framework. Clarifying the heterogeneity of development in girls is important for developing and optimizing gender-specific prevention and treatment programs. In the current review, we describe the unique aspects of the development of disruptive behavior in girls and explore how the gender-specific development of disruptive behavior can be explained by family linked risk and protective processes. Based on this review, we formulate a gender-specific reciprocal model of the influence of social factors on the development of disruptive behavior in girls in order to steer further research and better inform prevention and treatment programs

    Сетевая система контроля технологического процесса выращивания полупроводниковых кристаллов и тонких пленок

    Get PDF
    Экспериментальное моделирование аппаратно-программного обеспечения показало достаточную надежность работы системы и значительное уменьшение трудоемкости контроля и управления параметрами технологического процесса
    corecore