1,066 research outputs found

    Differential Cross Section for Charged A₁ Photoproduction Using the Regge Exchange Formalism

    Get PDF
    The Regge-pole formalism is applied to the calculation of the differential cross section for A1+ photo-production in the region |tmin| \u3c -t \u3c 10”2. The p, A1, A1-daughter, A2, and π trajectory contributions are considered, and use is made of chiral dynamics to estimate the unknown coupling constants. We find that the π and the A2 trajectories provide the dominant contributions

    The Grover algorithm with large nuclear spins in semiconductors

    Full text link
    We show a possible way to implement the Grover algorithm in large nuclear spins 1/2<I<9/2 in semiconductors. The Grover sequence is performed by means of multiphoton transitions that distribute the spin amplitude between the nuclear spin states. They are distinguishable due to the quadrupolar splitting, which makes the nuclear spin levels non-equidistant. We introduce a generalized rotating frame for an effective Hamiltonian that governs the non-perturbative time evolution of the nuclear spin states for arbitrary spin lengths I. The larger the quadrupolar splitting, the better the agreement between our approximative method using the generalized rotating frame and exact numerical calculations.Comment: 11 pages, 18 EPS figures, REVTe

    Energy of \u3cem\u3eK\u3c/em\u3e-Momentum Dark Excitons in Carbon Nanotubes by Optical Spectroscopy

    Get PDF
    Phonon sideband optical spectroscopy determines the energy of the dark K-momentum exciton for (6,5) carbon nanotubes. One-phonon sidebands appear in absorption and emission, split by two zone-boundary (K-point) phonons. Their average energy locates the E11 K-momentum exciton 36 meV above the E11 bright level, higher than available theoretical estimates. A model for exciton-phonon coupling shows the absorbance sideband depends sensitively on the K-momentum exciton effective mass and has minimal contributions from zone-center phonons, which dominate the Raman spectra of carbon nanotubes

    Electron spin relaxation by nuclei in semiconductor quantum dots

    Full text link
    We have studied theoretically the electron spin relaxation in semiconductor quantum dots via interaction with nuclear spins. The relaxation is shown to be determined by three processes: (i) -- the precession of the electron spin in the hyperfine field of the frozen fluctuation of the nuclear spins; (ii) -- the precession of the nuclear spins in the hyperfine field of the electron; and (iii) -- the precession of the nuclear spin in the dipole field of its nuclear neighbors. In external magnetic fields the relaxation of electron spins directed along the magnetic field is suppressed. Electron spins directed transverse to the magnetic field relax completely in a time on the order of the precession period of its spin in the field of the frozen fluctuation of the nuclear spins. Comparison with experiment shows that the hyperfine interaction with nuclei may be the dominant mechanism of electron spin relaxation in quantum dots

    Dynamic Kerr Effect and Spectral Weight Transfer in the Manganites

    Full text link
    We perform pump-probe Kerr spectroscopy in the colossally magnetoresistive manganite Pr0.67Ca0.33MnO3. Kerr effects uncover surface magnetic dynamics undetected by established methods based on reflectivity and optical spectral weight transfer. Our findings indicate the connection between spin and charge dynamics in the manganites may be weaker than previously thought. Additionally, important differences between this system and conventional ferromagnetic metals manifest as long-lived, magneto-optical coupling transients, which may be generic to all manganites.Comment: 12 text pages, 4 figure

    Coulomb interaction effects in spin-polarized transport

    Get PDF
    We study the effect of the electron-electron interaction on the transport of spin polarized currents in metals and doped semiconductors in the diffusive regime. In addition to well-known screening effects, we identify two additional effects, which depend on many-body correlations and exchange and reduce the spin diffusion constant. The first is the "spin Coulomb drag" - an intrinsic friction mechanism which operates whenever the average velocities of up-spin and down-spin electrons differ. The second arises from the decrease in the longitudinal spin stiffness of an interacting electron gas relative to a noninteracting one. Both effects are studied in detail for both degenerate and non-degenerate carriers in metals and semiconductors, and various limiting cases are worked out analytically. The behavior of the spin diffusion constant at and below a ferromagnetic transition temperature is also discussed.Comment: 9 figure

    Ultrafast spin dynamics and critical behavior in half-metallic ferromagnet : Sr_2FeMoO_6

    Full text link
    Ultrafast spin dynamics in ferromagnetic half-metallic compound Sr_2FeMoO_6 is investigated by pump-probe measurements of magneto-optical Kerr effect. Half-metallic nature of this material gives rise to anomalous thermal insulation between spins and electrons, and allows us to pursue the spin dynamics from a few to several hundred picoseconds after the optical excitation. The optically detected magnetization dynamics clearly shows the crossover from microscopic photoinduced demagnetization to macroscopic critical behavior with universal power law divergence of relaxation time for wide dynamical critical region.Comment: 14 pages, 4 figures. Abstract and Figures 1 & 3 are correcte
    • 

    corecore