12 research outputs found

    Estimation of Genetic Correlations of Primal Cut Yields with Carcass Traits in Hanwoo Beef Cattle

    No full text
    This study was carried out to estimate the variance components, heritability, and genetic correlations between the carcass traits and primal cut yields in Hanwoo cattle. Carcass traits comprising 5622 records included back fat thickness (BFT), carcass weight (CW), eye muscle area (EMA), and marbling score (MS). The 10 primal cut yields from 3467 Hanwoo steers included the tenderloin (TLN), sirloin (SLN), striploin (STLN), chuck (CHK), brisket (BSK), top round (TRD), bottom round (BRD), rib (RB), shank (SK), and flank (FK). In addition, three composite traits were formed by combining primal cut yields as novel traits according to consumer preferences and market price: high-value cuts (HVC), medium-value cuts (MVC), and low-value cuts (LVC). Heritability estimates for the interest of traits were moderate to high, ranging from 0.21 ± 0.04 for CHK to 0.59 ± 0.05 for MS. Except genetic correlations between RB and other primal cut traits, favorable and moderate to high correlations were observed among the yields of primal cut that ranged from 0.38 ± 0.14 (CHK and FK) to 0.93 ± 0.01 (TRD and BRD). Moreover, the estimated genetic correlations of CW and EMA with primal cut yields and three composite traits were positive and moderate to strong, except for BFT, which was negative. These results indicate that genetic progress can be achieved for all traits, and selection to increase the yields of primal cuts can lead to considerable profitability in the Hanwoo beef industry

    Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference

    Get PDF
    Synaptic adhesion molecules regulate diverse aspects of neuronal synapse development, including synapse specificity, formation, and maturation. Neph2, also known as Kirrel3, is an immunoglobulin superfamily adhesion molecule implicated in intellectual disability, neurocognitive delay associated with Jacobsen syndrome, and autism spectrum disorders. We here report mice lacking Neph2 (Neph2-/- mice) display moderate hyperactivity in a familiar, but not novel, environment and defective novel object recognition with normal performances in Morris water maze spatial learning and memory, contextual fear conditioning and extinction, and pattern separation tests. These mice also show normal levels of anxiety-like behaviors, social interaction, and repetitive behaviors. At the synapse level, Neph2-/- dentate gyrus granule cells exhibit unaltered dendritic spine density and spontaneous excitatory synaptic transmission. These results suggest that Neph2 is important for normal locomotor activity and object recognition memory. © 2015 FRONTIERS IN CELLULAR NEUROSCIENCE Choi, Han, Cutforth, Chung, Park, Lee, Kim, Kim, Choi, Shen and Kim1981sciescopu

    Down-regulation of RalBP1 expression reduces seizure threshold and synaptic inhibition in mice

    No full text
    Idiopathic epilepsy is characterized by seizures without a clear etiology and is believed to have a strong genetic component but exhibits a complex inheritance pattern. Genetic factors seem to confer a low seizure threshold to susceptible individuals and thereby enhance epileptogenesis. However, the identity of susceptibility genes and the mechanisms regulating seizure threshold are still poorly understood. Here, we describe that reduced expression of RalBP1, a downstream effector of the small GTPases RalA and RalB, lowers the seizure threshold in mice. The intraperitoneal injection of the chemoconvulsant pentylenetetrazol induced more severe seizures in RalBP1 hypomorphic mice than in their wild-type littermates. The reduction of RalBP1 in the brain has no effect on neuronal excitability, but does decrease the inhibitory synaptic transmission onto CA1 pyramidal neurons. This impaired synaptic inhibition was associated with the loss of GABAergic interneurons in the CA1 subfield of the hippocampus. The present study identifies RalBP1 as a gene regulating the seizure threshold in mice and provides direct evidence for the role of RalBP1 in synaptic inhibition in vivo.1441sciescopu

    Increased excitatory synaptic transmission of dentate granule neurons in mice lacking PSD-95-interacting adhesion molecule Neph2/Kirrel3 during the early postnatal period.

    Get PDF
    Copy number variants and point mutations of NEPH2 (also called KIRREL3) gene encoding an immunoglobulin (Ig) superfamily adhesion molecule have been linked to autism spectrum disorders, intellectual disability and neurocognitive delay associated with Jacobsen syndrome, but the physiological roles of Neph2 in the mammalian brain remain largely unknown. Neph2 is highly expressed in the dentate granule (DG) neurons of the hippocampus and is localized in both dendrites and axons. It was recently shown that Neph2 is required for the formation of mossy fiber filopodia, the axon terminal structure of DG neurons forming synapses with GABAergic neurons of CA3. In contrast, however, it is unknown whether Neph2 also has any roles in the postsynaptic compartments of DG neurons. We here report that, through its C-terminal PDZ domain-binding motif, Neph2 directly interacts with postsynaptic density (PSD)-95, an abundant excitatory postsynaptic scaffolding protein. Moreover, Neph2 protein is detected in the brain PSD fraction and interacts with PSD-95 in synaptosomal lysates. Functionally, loss of Neph2 in mice leads to age-specific defects in the synaptic connectivity of DG neurons. Specifically, Neph2−/− mice show significantly increased spontaneous excitatory synaptic events in DG neurons at postnatal week 2 when the endogenous Neph2 protein expression peaks, but show normal excitatory synaptic transmission at postnatal week 3. The evoked excitatory synaptic transmission and synaptic plasticity of medial perforant pathway (MPP)-DG synapses are also normal in Neph2−/− mice at postnatal week 3, further confirming the age-specific synaptic defects. Together, our results provide some evidence for the postsynaptic function of Neph2 in DG neurons during the early postnatal period, which might be implicated in neurodevelopmental and cognitive disorders caused by NEPH2 mutations. Copyright © 2017 Roh, Choi, Cho, Choi, Park, Cutforth, Chung, Park, Lee, Kim, Lee, Mo, Rhee, Kim, Ko, Choi, Bae, Shen, Kim and Han. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. © 2017 Roh, Choi, Cho, Choi, Park, Cutforth, Chung, Park, Lee, Kim, Lee, Mo, Rhee, Kim, Ko, Choi, Bae, Shen, Kim and Han. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Frontiers1321sciescopu

    Repeated ketamine anesthesia during neurodevelopment upregulates hippocampal activity and enhances drug reward in male mice

    No full text
    Juvenile mice treated with ketamine at anesthetic doses develop sex-specific differences in conditioned place-preference behavior and neuronal excitability, suggesting that repeated ketamine exposure might influence drug reward behavior later in life

    Exploring the Magnetic Properties of Individual Barcode Nanowires using Wide-Field Diamond Microscopy

    No full text
    A barcode magnetic nanowire typically comprises a multilayer magnetic structure in a single body with more than one segment type. Interestingly, due to selective functionalization and novel interactions between the layers, it has attracted significant attention, particularly in bioengineering. However, analyzing the magnetic properties at the individual nanowire level remains challenging. Herein, the characterization of a single magnetic nanowire is investigated at room temperature under ambient conditions based on magnetic images obtained via wide-field quantum microscopy with nitrogen-vacancy centers in diamond. Consequently, critical magnetic properties of a single nanowire can be extracted, such as saturation magnetization and coercivity, by comparing the experimental result with that of micromagnetic simulation. This study opens up the possibility for a versatile in situ characterization method suited to individual magnetic nanowires. © 2023 Wiley-VCH GmbH.11Nsciescopu
    corecore