81 research outputs found

    ホウシャセン ノ ソウゴ サヨウ ニツイテ 1

    Full text link

    Expression of hyaluronan synthase 3 in deformed human temporomandibular joint discs: in vivo and in vitro studies

    Get PDF
    The present study aimed at investigating the expression of a hyaluronan synthase (HAS) 3 in tissue samples of deformed human temporomandibular joint (TMJ) discs and cells obtained from the discs. Fifteen adult human TMJ discs (twelve diseased discs and three normal discs) were used in this study. The twelve diseased discs were obtained from twelve patients with internal derangement (ID) of TMJ. These patients all had anteriorly displaced discs and deformed discs. The tissues were immunohistochemically stained using HAS3 antibodies. In addition, the subcultured TMJ disc cells under both normal and hypoxic conditions (O2: 2%) were incubated for 3, 6, 12, and 24 h after addition of interleukin-1β (IL-1β) (1 ng/mL). Subsequently, the expression of HAS3 was examined using real-time reverse transcription-polymerase chain reaction (RT-PCR). The control group showed from negative to weak positive reactions for HAS3 on immunohistochemical staining. The discs extracted from twelve cases with ID presented from moderate to strong positive reactions for HAS3. The quantity of HAS3 mRNA was compared with a control group, and showed a 204-fold increase at 3 h, a 26-fold increase at 6 h, a 2.5-fold increase at 12 h and a 32-fold increase at 24 h under hypoxia with the addition of IL-1β. The expression of HAS3 mRNA was significantly enhanced at 3 h and 24 h. The results obtained suggest that HAS3 is related to the pathological changes of human TMJ discs affected by ID

    In silico selection of RNA aptamers

    Get PDF
    In vitro selection of RNA aptamers that bind to a specific ligand usually begins with a random pool of RNA sequences. We propose a computational approach for designing a starting pool of RNA sequences for the selection of RNA aptamers for specific analyte binding. Our approach consists of three steps: (i) selection of RNA sequences based on their secondary structure, (ii) generating a library of three-dimensional (3D) structures of RNA molecules and (iii) high-throughput virtual screening of this library to select aptamers with binding affinity to a desired small molecule. We developed a set of criteria that allows one to select a sequence with potential binding affinity from a pool of random sequences and developed a protocol for RNA 3D structure prediction. As verification, we tested the performance of in silico selection on a set of six known aptamer–ligand complexes. The structures of the native sequences for the ligands in the testing set were among the top 5% of the selected structures. The proposed approach reduces the RNA sequences search space by four to five orders of magnitude—significantly accelerating the experimental screening and selection of high-affinity aptamers

    Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria

    Get PDF
    The emergence of antimicrobial-resistant bacteria is an increasingly serious threat to global health, necessitating the development of innovative antimicrobials. Here we report the development of a series of CRISPR-Cas13a-based antibacterial nucleocapsids, termed CapsidCas13a(s), capable of sequence-specific killing of carbapenem-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus by recognizing corresponding antimicrobial resistance genes. CapsidCas13a constructs are generated by packaging programmed CRISPR-Cas13a into a bacteriophage capsid to target antimicrobial resistance genes. Contrary to Cas9-based antimicrobials that lack bacterial killing capacity when the target genes are located on a plasmid, the CapsidCas13a(s) exhibit strong bacterial killing activities upon recognizing target genes regardless of their location. Moreover, we also demonstrate that the CapsidCas13a(s) can be applied to detect bacterial genes through gene-specific depletion of bacteria without employing nucleic acid manipulation and optical visualization devices. Our data underscore the potential of CapsidCas13a(s) as both therapeutic agents against antimicrobial-resistant bacteria and nonchemical agents for detection of bacterial genes

    Multicolor plate reader fluorescence calibration

    Get PDF
    Plate readers are commonly used to measure cell growth and fluorescence, yet the utility and reproducibility of plate reader data is limited by the fact that it is typically reported in arbitrary or relative units. We have previously established a robust serial dilution protocol for calibration of plate reader measurements of absorbance to estimated bacterial cell count and for green fluorescence from proteins expressed in bacterial cells to molecules of equivalent fluorescein. We now extend these protocols to calibration of red fluorescence to the sulforhodamine-101 fluorescent dye and blue fluorescence to Cascade Blue. Evaluating calibration efficacy via an interlaboratory study, we find that these calibrants do indeed provide comparable precision to the prior calibrants and that they enable effective cross-laboratory comparison of measurements of red and blue fluorescence from proteins expressed in bacterial cells

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    EGFR Inhibitor Enhances Cisplatin Sensitivity of Oral Squamous Cell Carcinoma Cell Lines

    Get PDF
    Epidermal growth factor receptor (EGFR) is involved in multiple aspects of cancer cell biology. EGFR has already been identified as an important target for cancer therapy, with various kinds of EGFR inhibitors currently used in treatment of several human cancers. Recently, EGFR and its downstream signaling pathways were identified as being associated with cisplatin sensitivity. In addition, EGFR inhibitors have shown significant promise for patients who failed cisplatin-based therapy. In this study, we investigated whether treatment with an EGFR inhibitor improves cisplatin sensitivity in oral squamous cell carcinoma (OSCC) cell lines. The effects of a combination of AG1478, a specific EGFR tyrosine kinase inhibitor, with cisplatin were evaluated in cultured OSCC cell lines and cisplatin-resistant sublines. Higher expression of EGFR and p-EGFR was found in the two cisplatin-resistant cell lines compared with the corresponding parental cell lines. In addition, augmented inhibition of OSCC cell growth by the combination of AG1478 with cisplatin was found in both cell lines. These results suggest that the combination of an EGFR inhibitor and cisplatin may be useful as a rational strategy for the treatment of patients with oral cancer with acquired cisplatin resistance
    corecore