1,577 research outputs found
Quantum-dot-based optical polarization conversion
We report circular-to-linear and linear-to-circular conversion of optical
polarization by semiconductor quantum dots. The polarization conversion occurs
under continuous wave excitation in absence of any magnetic field. The effect
originates from quantum interference of linearly and circularly polarized
photon states, induced by the natural anisotropic shape of the self assembled
dots. The behavior can be qualitatively explained in terms of a pseudospin
formalism.Comment: 5 pages, 3 figures; a reference adde
Virial theorem for rotating self-gravitating Brownian particles and two-dimensional point vortices
We derive the proper form of Virial theorem for a system of rotating
self-gravitating Brownian particles. We show that, in the two-dimensional case,
it takes a very simple form that can be used to obtain general results about
the dynamics of the system without being required to solve the
Smoluchowski-Poisson system explicitly. We also develop the analogy between
self-gravitating systems and two-dimensional point vortices and derive a
Virial-like relation for the vortex system
Anomalous in-plane magneto-optical anisotropy of self-assembled quantum dots
We report on a complex nontrivial behavior of the optical anisotropy of
quantum dots that is induced by a magnetic field in the plane of the sample. We
find that the optical axis either rotates in the opposite direction to that of
the magnetic field or remains fixed to a given crystalline direction. A
theoretical analysis based on the exciton pseudospin Hamiltonian unambiguously
demonstrates that these effects are induced by isotropic and anisotropic
contributions to the heavy-hole Zeeman term, respectively. The latter is shown
to be compensated by a built-in uniaxial anisotropy in a magnetic field B_c =
0.4 T, resulting in an optical response typical for symmetric quantum dots.Comment: 5 pages, 3 figure
Optical spin pumping of modulation doped electrons probed by a two-color Kerr rotation technique
We report on optical spin pumping of modulation electrons in CdTe-based
quantum wells with low intrinsic electron density (by 10^10 cm^{-2}). Under
continuous wave excitation, we reach a steady state accumulated spin density of
about 10^8 cm^{-2}. Using a two-color Hanle-MOKE technique, we find a spin
relaxation time of 34 ns for the localized electrons in the nearly unperturbed
electron gas. Independent variation of the pump and probe energies demonstrates
the presence of additional non-localized electrons in the quantum well, whose
spin relaxation time is substantially shorter
Monotonicity of quantum ground state energies: Bosonic atoms and stars
The N-dependence of the non-relativistic bosonic ground state energy is
studied for quantum N-body systems with either Coulomb or Newton interactions.
The Coulomb systems are "bosonic atoms," with their nucleus fixed, and the
Newton systems are "bosonic stars". In either case there exists some third
order polynomial in N such that the ratio of the ground state energy to the
respective polynomial grows monotonically in N. Some applications of these new
monotonicity results are discussed
Suppression of electron spin relaxation in Mn-doped GaAs
We report a surprisingly long spin relaxation time of electrons in Mn-doped
p-GaAs. The spin relaxation time scales with the optical pumping and increases
from 12 ns in the dark to 160 ns upon saturation. This behavior is associated
with the difference in spin relaxation rates of electrons precessing in the
fluctuating fields of ionized or neutral Mn acceptors, respectively. For the
latter the antiferromagnetic exchange interaction between a Mn ion and a bound
hole results in a partial compensation of these fluctuating fields, leading to
the enhanced spin memory.Comment: 4 pages, 4 figure
Pitch determination considering laryngealization effects in spoken dialogs
A frequent phenomenon in spoken dialogs of the information seeking type are short elliptic utterances whose mood (declarative or interrogative) can only be distinguished by intonation. The main acoustic evidence is conveyed by the fundamental frequency or Fo-contour. Many algorithms for Fo determination have been reported in the literature. A common problem are irregularities of speech known as "laryngealizations". This article describes an approach based on neural network techniques for the improved determination of fundamental frequency. First, an improved version of our neural network algorithm for reconstruction of the voice source signal (glottis signal) is presented. Second, the reconstructed voice source signal is used as input to another neural network distinguishing the three classes "voiceless", "voiced non-laryngealized", and "voiced laryngealized". Third, the results are used to improve an existing Fo algorithm. Results of this approach are presented and discussed in the context of the application in a spoken dialog system
- …