38 research outputs found

    Stochastic resonance in a suspension of magnetic dipoles under shear flow

    Get PDF
    We show that a magnetic dipole in a shear flow under the action of an oscillating magnetic field displays stochastic resonance in the linear response regime. To this end, we compute the classical quantifiers of stochastic resonance, i.e. the signal to noise ratio, the escape time distribution, and the mean first passage time. We also discuss limitations and role of the linear response theory in its applications to the theory of stochastic resonance.Comment: 17 pages, 5 figures, approved for publication in PR

    Existence and stability of viscoelastic shock profiles

    Full text link
    We investigate existence and stability of viscoelastic shock profiles for a class of planar models including the incompressible shear case studied by Antman and Malek-Madani. We establish that the resulting equations fall into the class of symmetrizable hyperbolic--parabolic systems, hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. The new contributions are treatment of the compressible case, formulation of a rigorous nonlinear stability theory, including verification of stability of small-amplitude Lax shocks, and the systematic incorporation in our investigations of numerical Evans function computations determining stability of large-amplitude and or nonclassical type shock profiles.Comment: 43 pages, 12 figure

    Somitogenesis Clock-Wave Initiation Requires Differential Decay and Multiple Binding Sites for Clock Protein

    Get PDF
    Somitogenesis is a process common to all vertebrate embryos in which repeated blocks of cells arise from the presomitic mesoderm (PSM) to lay a foundational pattern for trunk and tail development. Somites form in the wake of passing waves of periodic gene expression that originate in the tailbud and sweep posteriorly across the PSM. Previous work has suggested that the waves result from a spatiotemporally graded control protein that affects the oscillation rate of clock-gene expression. With a minimally constructed mathematical model, we study the contribution of two control mechanisms to the initial formation of this gene-expression wave. We test four biologically motivated model scenarios with either one or two clock protein transcription binding sites, and with or without differential decay rates for clock protein monomers and dimers. We examine the sensitivity of wave formation with respect to multiple model parameters and robustness to heterogeneity in cell population. We find that only a model with both multiple binding sites and differential decay rates is able to reproduce experimentally observed waveforms. Our results show that the experimentally observed characteristics of somitogenesis wave initiation constrain the underlying genetic control mechanisms

    Growth-induced buckling of an epithelial layer

    Get PDF
    We use a proof-of-concept experiment and two mathematical models to explore growth-induced tissue buckling, as may occur in colorectal crypt formation. Our experiment reveals how growth of a cultured epithelial monolayer on a thin flexible substrate can cause out-of-plane substrate deflections. We describe this system theoretically using a 'bilayer' model in which a growing cell layer adheres to a thin compressible elastic beam. We compare this with the 'supported-monolayer' model due to Edwards and Chapman (Bull Math Biol 69:1927-1942, 2007) for an incompressible expanding beam (representing crypt epithelium), which incorporates viscoelastic tethering to underlying stroma. We show that the bilayer model can exhibit buckling via parametric growth (in which the system passes through a sequence of equilibrium states, parameterised by the total beam length); in this case, non-uniformities in cell growth and variations in cell-substrate adhesion are predicted to have minimal effect on the shape of resulting buckled states. The supported-monolayer model reveals how competition between lateral supports and stromal adhesion influences the wavelength of buckled states (in parametric growth), and how non-equilibrium relaxation of tethering forces influences post-buckled shapes. This model also predicts that non-uniformities in growth patterns have a much weaker influence on buckled shapes than non-uniformities in material properties. Together, the experiment and models support the concept of patterning by growth-induced buckling and suggest that targeted softening of a growing cell layer provides greater control in shaping tissues than non-uniform growth

    Solving DAE's With Inconsistent Initial Conditions

    No full text
    An important class of implicit Runge-Kutta methods for the solution of index one DAEs of the form Mx 0 = F (t; x) are shown to converge at the same rate whether or not the initial conditions are consistent

    RAMBO: Run-time packer analysis with multiple branch observation

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.2414/62015-2009Solving Hamilton-Jacobi-Bellman (HJB) equations is essential in feedback optimal con- trol. Using the solution of HJB equations, feedback optimal control laws can be imple- mented in real-time with minimum computational load. However, except for systems with two or three state variables, numerically solving HJB equations for general nonlinear sys- tems is unfeasible due to the curse of dimensionality. In this paper, we develop a new computational method of solving HJB equations. The method is causality free, which en- joys the advantage of perfect parallelism on a sparse grid. Compared with dense grids, a sparse grid has a signi cantly reduced size which is feasible for systems with relatively high dimensions, such as 6-D HJB equations for the attitude control of rigid bodies. The method is applied to the optimal attitude control of a satellite system using momentum wheels. The accuracy of the numerical solution is veri ed at a set of randomly selected sample points.AFOSRNR
    corecore