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A Causality Free Computational Method for HJB

Equations with Application to Rigid Body Satellites∗

Wei Kang† and Lucas Wilcox†

Naval Postgraduate School, Monterey, CA 93943, USA

Solving Hamilton-Jacobi-Bellman (HJB) equations is essential in feedback optimal con-
trol. Using the solution of HJB equations, feedback optimal control laws can be imple-
mented in real-time with minimum computational load. However, except for systems with
two or three state variables, numerically solving HJB equations for general nonlinear sys-
tems is unfeasible due to the curse of dimensionality. In this paper, we develop a new
computational method of solving HJB equations. The method is causality free, which en-
joys the advantage of perfect parallelism on a sparse grid. Compared with dense grids,
a sparse grid has a significantly reduced size which is feasible for systems with relatively
high dimensions, such as 6-D HJB equations for the attitude control of rigid bodies. The
method is applied to the optimal attitude control of a satellite system using momentum
wheels. The accuracy of the numerical solution is verified at a set of randomly selected
sample points.

I. Introduction

The attitude control of rigid satellite systems with momentum wheels has been an active topic of research
for many years. The nonlinear nature of satellite models makes the attitude control problem attractive and
challenging. The huge literature on this topic includes almost all popular feedback design approaches such
as Lyapunov functions, linear and nonlinear H∞ control, fuzzy-neuro control, linear and nonlinear output
regulations, and adaptive control.

Optimal feedback control is used to stabilize the attitude while minimizing a cost function. Using dynamic
programming, the feedback control law is constructed based on the solution of a partial differential equation
(PDE) that is called the Hamilton-Jacobi-Bellman (HJB) equation. This theoretically elegant approach
suffers some difficulties in computation due to the curse of dimensionality, a term that was coined by
Richard E. Bellman when considering problems in dynamic optimization, which relates to the fact that
the size of the discretized problem in solving HJB equations increases exponentially with the dimension.
Finding an approximate solution to HJB-type of equations in a local neighborhood of a trajectory has been
extensively studied, see Al’brecht,1 Cacace et al.,5 Kang et al.,8 Lukes,11 Navasca-Krener12 and references
therein. Some of the methods can be applied to systems with high dimensions. However, finding semi-global
solutions to HJB equations, i.e., solutions satisfying a required accuracy in a given domain, faces the curse of
dimensionality. In fact, numerically solving the HJB equation for a nonlinear system with six state variables
is extremely challenging, if not impossible. To the best of our knowledge, no semi-global solutions have been
found for the HJB equations for rigid body systems controlled by momentum wheels, either the controllable
case or the underactuated case of two wheels.

In this paper, we develop a new computational method to solve the HJB equation for the optimal attitude
control of rigid satellite with three or two momentum wheels. The curse of dimensionality is mitigated by
using a sparse grid that employs Smolyak’s construction.13 The solution at each of the gridpoints is found
using the Lobatto IIIa method to solve a two-point boundary problem. Different from many algorithms
of solving PDEs, this approach is not based on spatial causality. A significant advantage of this causality
free method lies in its perfectly parallelism, a desirable property for modern computation equipment with
manycore clusters.

∗This work was supported in part by AFOSR and NRL.
†Professor, Department of Applied Mathematics, Naval Postgraduate School.
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In Section II, the problem of optimal attitude control is formulated using a quadratic cost function. The
causality free computational method is introduced in Section III. Two examples are given in Section IV, one
is a fully controllable system and the other is underactuated.

II. Problem formulation

Various models of rigid satellites using momentum wheels have been widely studied in the literature,
for instance Byrnes-Isidori,4 Crouch,6 and Krishnan.10 Let {e1, e2, e3} be an inertial frame of orthonormal
vectors and let {e′1, e′2, e′3} be a body-fixed frame, or body frame. In this paper, the attitude of a satellite is
represented by Euler angles (see Diebel7 )

v =
[
φ θ ψ

]T
in which φ, θ, and ψ are the angles of rotation around e′1, e′2, and e′3, respectively, in the order of (3, 2, 1).
The angular velocity is a vector in the body frame,

ω =
[
ω1 ω2 ω3

]T
The control system using momentum wheels is defined by a set of differential equations

v̇ = E(v)ω

Jω̇ = S(ω)R(v)H +Bu
(1)

where B ∈ <3×m is a constant matrix, m is the number of momentum wheels, u is the control torque,
J ∈ <3×3 is a combination of inertia matrices of the rigid body without wheels and the momentum wheels,
H ∈ <3 is the total and constant angular momentum of the system, and E(v), S(ω), R(v) are the following
matrices

E(v) =

 1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ

 , S(ω) =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


R(v) =

 cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ cos θ sinφ

cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cos θ cosφ


In Crouch,6 it is proved that the system is controllable if m = 3 and uncontrollable if m < 3 (underactuated).
The problem of optimal control to be solved is to find a feedback uoptimal(t, v, ω) that minimizes the following
cost ∫ tf

0

L(v, ω, u)dt+ h(v(tf ), ω(tf ))

L(v, ω, u) =
W1

2
||v||2 +

W2

2
||ω||2 +

W3

2
||u||2

h(v(tf ), ω(tf )) =
W4

2
||v(tf )||2 +

W5

2
||ω(tf )||2

(2)

where Wi, i = 1, 2, 3, 4, are weight constants. Following the standard approach of optimal control, we define
the Hamiltonian

H(v, ω, λv, λω, u) = L(v, ω, u) + λTv E(v)ω + λTωJ
−1(S(ω)R(v)H +Bu)

The function

u∗(v, ω, λv, λω) = − 1

W3
BTJ−1λω (3)

minimizes the Hamiltonian. Define

H∗(v, ω, λv, λω) = H(v, ω, λv, λω, u
∗) (4)
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Consider the following HJB equation with a final time condition

Vt(t, v, ω) +H∗(v, ω, V Tv (t, v, ω), V Tw (t, v, ω)) = 0

V (tf , v, ω) = h(v, ω)
(5)

It is a PDE in which

V Tv (t, v, ω) =

(
∂V

∂v

)T
, V Tω (t, v, ω) =

(
∂V

∂ω

)T
are column vectors. If one can solve (5), the feedback control law is a function defined as follows

uoptimal(t, v, ω) = u∗(v, ω, V Tv (t, v, ω), V Tω (t, v, ω))

III. A causality free algorithm

Typically, partial differential equations are numerically solved based on a discretization that results in a
finite dimensional problem. However, the dimension of the discretization space increases exponentially with
the dimension of the PDE. Taking dense grids as an example, if d is the dimension of a PDE, then the size of
a grid is Nd, where N is the number of grid points used to approximate a single dimension in the PDE. The
size of the grid is proportional to the dimension of the discretization space. There are six state variables,
(v, ω), in (5). If 25 = 32 gridpoints are used to approximate a single variable, which is quite small, the total
number of gridpoints for the 6-D problem is over 109. If 100 points are used for a single variable, then the
size of the dense grid is 1012. For conventional methods of computational PDEs, the required computational
time and memory size are simply too high for practical applications.

In this paper, a causality free computational method consists of two components: (1) A solver that can
find the value of V (t, x) at any grid point; and the computation is independent of the approximation of
V (t, x) at other points. (2) A set of grid points, such as a sparse grid, with a reduced size to make the
problem tractable. The causality free method introduced in this section is based on boundary value problem
solvers and sparse grids. The goal is to solve HJB equations for d < 10. In this paper, we use (5), in which
d = 6, to test the method.

A. Sparse grids

In this paper, we adopt the Chebyshev-Gauss-Lobatto (CGL) sparse grid. It is a known fact that the size
of sparse grids increases with the dimension, d, in the order of

O(N(logN)d−1),

which is in sharp contrast to the size of the corresponding dense grid

O(Nd).

Obviously, the significantly reduced number of gridpoints has its impact to accuracy. An upper bound
of interpolation error using a CGL sparse grid is derived in Barthelmann et al.2 For a given function
f : [−1, 1]d → <, let k be an integer such that all derivatives Dβf , where β ∈ Nd and βi ≤ k, are continuous.
Then the error of interpolation on a sparse grid is

||e||∞ = O(N−k| logN |(k+2)(d+1)+1)

Compared with the error bound using a dense grid,

O(N−k)

we pay a small price in terms of accuracy to achieve a significantly reduced size of the grid.
Sparse grids have a hierarchical structure. For each variable, the set of gridpoints contains several layers

of subsets, denoted by Xi. The number of points in each subset satisfies{
m1 = 1,

mi = 2i−1 + 1,
(6)
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The gridpoints are defined as follows
X1 =

{
1

2

}
Xi =

{
1

2

(
1− cos

(k − 1)π

2i−1

)
, k = 1, 2, · · ·mi

} (7)

Note that Xi−1 ⊂ Xi. The set of points in Xi but not in Xi−1 is denoted by ∆Xi. In [−1, 1]d, the dense
grid build on Xq for an integer q > 0 is

Xq × · · · ×Xq =
⋃

1≤|i|≤q

∆X i

where

i =
[
i1 i2 · · · id

]
|i| = i1 + i2 + · · ·+ id

∆X i = ∆Xi1 ×∆Xi2 × · · · ×∆Xid

Following Smolyak’s approximation algorithm,2,13 the sparse grid, denoted by Gqsparse, is defined as follows,

Gqsparse =
⋃
|i|≤q

∆X i

Figure 1. CGL sparse grid in [0, 1]2, q = 6 and q = 8

Figure 1 shows two examples of Gqsparse. For q = 8, Gqsparse has 385 gridpoints whereas the corresponding
dense grid has (26 + 1)2 = 4225 points. The difference of grid size is increasingly significant for higher
dimensions. In fact, the size of Gqsparse increases with d in the order of

O(N(logN)d−1)

in sharp contrast to O(Nd), the size of the corresponding dense grid. The significantly reduced number of
gridpoints makes it possible to discretize a PDE into a tractable numerical problem.

B. Achieving causality-free using necessary conditions of optimal control

In most numerical methods for the HJB equation (which is typically solved backwards in time), the dis-
cretization is based on spatial causality and explicit in time, i.e., the value of the solution function V (t, v, ω)
at a gridpoint is computed at an earlier time using the known value of the function at neighboring gridpoints
at a later time. This coupling usually comes from the discretization of the spatial derivatives. For HJB
equations of high dimensions, in this case d = 6, solving the equation using traditional algorithms based on
dense grids is very difficult, if not impossible. Developing algorithms based on sparse grids is a promising
approach to mitigate the curse of dimensionality. In our opinion, applying spatial causality in algorithms on
a sparse grids is challenging. The distance between adjacent points in a sparse grid varies in a large range due
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to the hierarchical structure. In contrast to this, our proposed discretization technique does not discretize
the HJB equations directly but instead uses Pontryagin’s minimum principle to derive a set of necessary
conditions in the form of a boundary value problem for each grid point. As a result, the computation of the
solution at an initial point in space is independent of other points. This approach is also different from the
semi-Lagrangian method on sparse grid in Bokanowski et al.3 in which the HJB is integrated backward in
time while the gridpoints are adaptively adjusted based on the value of the computed solution at neighboring
points at a later time.

In general, consider a control system

ẋ(t) = f(t, x(t), u(t)) (t0 < t < tf ) (8a)

x(t0) = x0 (8b)

The cost functional to be minimized is

min
u(t)

∫ tf

t0

L(t, x, u) dt+ h(tf , x(tf )) (9)

For the rigid satellite system, x consists of
[
φ θ ψ

]T
and ω. Define the Hamiltonian

H(t, x, λ, u) = L(t, x, u) + λT f(t, x, u)

Suppose we can minimize it
u∗(t, x, λ) = arg min

u(t)

H(t, x, λ, u).

Define
H∗(t, x, λ) = H(t, x, λ, u∗(t, x, λ))

Then the optimal trajectory with an initial condition x0 satisfies

ẋ =

(
∂H∗

∂λ
(t, x, λ)

)T
(10a)

λ̇ = −
(
∂H∗

∂x
(t, x, λ)

)T
(10b)

ż = L(t, x, u∗(t, x, λ)) (10c)

with the boundary conditions

x(t0) = x0 (10d)

λ(tf ) = hTx (tf , x(tf )) (10e)

z(t0) = 0 (10f)

(10g)

The optimal control and the minimum costs are

u∗(t) = u∗(t, x(t), λ(t)), V (t0, x0) = z(tf ) + h(tf , x(tf )) (11)

Given any gridpoint, x0, in Gqsparse, we can solve the boundary value problem (10) to find the optimal
control and the corresponding minimum cost without using the value of V (t, x) in any nearby points, i.e.,
the computation is causality free.

C. Some remarks on numerical computations

Numerical algorithms for boundary value problems similar to (10) have been studied by many authors. In the
examples, we adopt an algorithm based on the four-stage Lobatto IIIa formula. This is a collocation formula
and the collocation polynomial provides a solution that is fifth-order accurate (see Kierzenka-Shampine9).
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In the computation, the numerical solution is able to achieve accurate solutions at any given point with
estimated errors smaller than 10−12. For the reason of CPU time, we set error tolerance at 10−6.

From a conventional viewpoint, solving two-point boundary value problems is not an efficient approach
for PDEs. On the other hand, the causality free method is perfectly parallel. In fact, the computation
of V (t, x) at each gridpoint can be carried out without the need of any information from other points in
its neighborhood. Although not a preferred algorithm in conventional serial computation, causality free
algorithms can easily be implemented in massively parallel computational equipment. The combination of
sparse grids, boundary value problem solvers, and parallel computation is the key to mitigate the curse of
dimensionality effectively for problems in which d is not too large.

The interpolation on a sparse grid is used to compute V (t, x) if x is not a gridpoint. Consider Xi ⊆ [0, 1],
i ≥ 1. A basis function, axi(x), for a point xi ∈ Xi is defined on [0, 1] satisfying

axi(x) =

{
1 x = xi

0 x ∈ Xi, x 6= xi

or a simplified notation for xij ∈ ∆Xi

aij(x) = axi
j
(x)

A few basis functions at CGL gridpoints are shown in Figure 2. They are defined using a polynomial
interpolation

aij(x) =
∏
xi∈Xi

x− xij
xi − xij

The interpolation on a sparse grid does not need every basis function. In fact, for each i ≥ 1, an interpolation

a
1

1
(x)

a
2

1
(x) a

2

2
(x)

a
3

1
(x) a

3

2
(x)

a
4

1
(x) a

4

2
(x) a

4

3
(x) a

4

4
(x)

Figure 2. Basis functions for CGL grid

function uses only those axi for which xi ∈ ∆Xi. Let Iq(f) be the interpolation of f at gridpoints of Gqsparse.

It is defined iteratively on [0, 1]d

Id−1(f) = 0

Iq(f) = Iq−1 + ∆Iq(f), q ≥ d
∆Iq(f) =

∑
|i|=q

∑
1≤j≤∆mi

wi
ja
i1
j1
⊗ · · · ⊗ aidjd

wi
j = f(xij)− Iq−1(f)(xij)

(12)

where ∆mi is the size of ∆X i = ∆Xi1 ⊗ · · · ⊗∆Xid and

ai1j1 ⊗ · · · ⊗ a
id
jd

(x1, · · · , xd) = ai1j1(x1) · · · aidjd(xd)

The weights, wi
j, are called hierarchical surpluses.

IV. Examples

Two examples are used to test the algorithm, one is controllable and the other is underactuated.
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A. A satellite system with three control momentum wheels

Consider a rigid body controlled by three momentum wheels. In the model (1), B is a 3 × 3 matrix. The
following parameter values are used in this example

B =

 1 1 1

1 1/2 1/2

1/2 0 1/3


J =

 2 0 0

0 3 0

0 0 4


H =

[
1 1 1

]T
W1 = 1,W2 = 1,W3 = 1/2,W4 = 1,W5 = 1

t0 = 0, tf = 20

(13)

The solution V (t, v, ω) is computed at t = 0 for initial states v(0) and ω(0) in two domains, D1 and D2, of
different size,

D1 :
− π

12
≤ φ, θ, ψ ≤ π

12
−0.1 ≤ ω1, ω2, ω3 ≤ 0.1

(14)

D2 :
−π

3
≤ φ, θ, ψ ≤ π

3
−0.2 ≤ ω1, ω2, ω3 ≤ 0.2

(15)

In D1, the sparse grid of q = 11 is used. The number of gridpoints for each dimension is 2q−6 + 1 = 33. The
total number of gridpoints in the 6-D domain is

|Gqsparse| = 4, 865

which is small in comparison with the size of a dense grid,

|Gdense| = 336 > 109

In the larger domain, D2, we increase the size of Gqsparse to the level of q = 13. In this case,

|Gqsparse| = 44, 698

The size of the corresponding dense grid has more than 4× 1012 points.
In both D1 and D2, the TPBVP (10) is solved at each gridpoint in Gqsparse using a method based on

four-stage Lobatto IIIa formula in Kierzenka-Shampine.9 The hierarchical surpluses for interpolation are
computed using (12). Then we check the accuracy of V (0, v, ω). More specifically, 500 points are randomly
generated in D1 and D2. The value of V (0, v, ω) is computed at these points using interpolation on Gqsparse.
The true value at the same point is approximated by solving (10). The difference between these two numbers
is an approximation of error in interpolation. In the small domain D1, the root-mean-square error (RMSE)
is 1.2× 10−5. In the large domain D2, the result is less accurate. The RMSE equals 4.3× 10−3. The results
are summarized in Table 1.

Domain q |Gqsparse|
Dense grid

size
RMSE

D1 q = 11 4, 865 > 109 1.2× 10−5

D2 q = 13 44, 698 > 1012 4.3× 10−3

Table 1. Summary of results

At ω = 0, the graph of V (0, v, ω) is shown in Figure 3. The optimal control is supposed to stabilize the
system. Figure 4 has a typical trajectory in which (v, ω) converges to zero.
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Figure 3. V (0, x) on φθ- and φψ-planes in D2
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Figure 4. Trajectories (Line: φ, ω1, u1; dash: θ, ω1, u2; dot: ψ, ω3, u3 )

B. A satellite system with two actuators

Consider a rigid body controlled by two momentum wheels. The parameters in this example are assigned
the same values as in (13) except that the input matrix is changed,

B =

 1 0

0 1

0 0


All computations in this example are based on a sparse grid of q = 11 in the region D1. A graph of V (0, v, ω)
at ω = 0 is shown in Figure 5. A typical trajectory is shown in Figure 6. It is proved in Crouch6 that
the system is uncontrollable. In general, v(t) does not approach to zero even under an optimal control. It
is also proved in the literature that, if appropriate control input is applied, ω(t) may converge to zero. In
other words, one can stop the rotation using an optimal control but it is impossible to point the satellite to
a given orientation. A typical trajectory in Figure 6 does converge. In fact, ω is almost stabilized at t = 10.
When t approaches the end of the time interval, ω(t) is re-activated. This is due to the end point cost in
the problem formulation (2).

The value of V (0, v, ω) at the gridponts are computed by solving the TPBVP (10). Then the hierarchical
surpluses for the interpolation are computed using (12). Similar to the previous example, we check the
accuracy at 500 random points in D1. The value of V (0, v, ω) is computed at these points using interpolation
on Gqsparse. The true value at the same point is approximated by solving (10). The resulting RMSE equals
6.2× 10−3.

8 of 10

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
V

A
L

 P
O

ST
G

R
A

D
U

A
T

E
 S

C
H

O
O

L
 o

n 
M

ay
 4

, 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

20
09

 



−0.2
−0.1

0
0.1

0.2

−0.2
−0.1

0
0.1

0.2

0

0.5

1

1.5

V
(0

,x
)

φθ

−0.2
−0.1

0
0.1

0.2
−0.2 −0.1 0 0.1 0.2

0

0.2

0.4

0.6

0.8

1

V
(0

,x
)

ψ

φ

Figure 5. V (0, x) on φθ- and φψ-planes in D1

0 10 20
−0.4

−0.2

0

0.2

0.4

time

φ
,θ

,ψ

0 10 20
−0.2

−0.1

0

0.1

0.2

time

ω
1
,ω

2
,ω

3

0 10 20
−1

−0.5

0

0.5

time

u
1
,u

2
,u

3

Figure 6. Trajectories (Line: φ, ω1, u1; dash: θ, ω1, u2; dot: ψ, ω3, u3 )

V. Conclusions

The causality free method introduced in this paper is perfectly parallel. In contrast to dense grids, the
size of sparse grids is significantly small. In the case of a controllable satellite with six state variables, an
accurate solution is achieved on a sparse grid of less than five thousand points, whereas a similar accuracy
on a dense grid would require more than 109 gridpoints. The accuracy decreases when the size of the region
of initial states is increased. For the uncontrollable example, the error is large in the relatively small region.
The accuracy is not satisfactory. For future work, the algorithm will be implemented in computers with
manycore clusters so that a larger sparse grid and higher error tolerance can be used to increase the overall
accuracy of the solution. A feedback control law will be constructed based on the solution of the HJB
equation. It will be implemented in a closed-loop simulation to test the performance of the feedback law.
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