368 research outputs found

    Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism

    Get PDF
    An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-omics steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population

    The Genetic Requirements for Fast and Slow Growth in Mycobacteria

    Get PDF
    Mycobacterium tuberculosis infects a third of the world's population. Primary tuberculosis involving active fast bacterial replication is often followed by asymptomatic latent tuberculosis, which is characterised by slow or non-replicating bacteria. Reactivation of the latent infection involving a switch back to active bacterial replication can lead to post-primary transmissible tuberculosis. Mycobacterial mechanisms involved in slow growth or switching growth rate provide rational targets for the development of new drugs against persistent mycobacterial infection. Using chemostat culture to control growth rate, we screened a transposon mutant library by Transposon site hybridization (TraSH) selection to define the genetic requirements for slow and fast growth of Mycobacterium bovis (BCG) and for the requirements of switching growth rate. We identified 84 genes that are exclusively required for slow growth (69 hours doubling time) and 256 genes required for switching from slow to fast growth. To validate these findings we performed experiments using individual M. tuberculosis and M. bovis BCG knock out mutants. We have demonstrated that growth rate control is a carefully orchestrated process which requires a distinct set of genes encoding several virulence determinants, gene regulators, and metabolic enzymes. The mce1 locus appears to be a component of the switch to slow growth rate, which is consistent with the proposed role in virulence of M. tuberculosis. These results suggest novel perspectives for unravelling the mechanisms involved in the switch between acute and persistent TB infections and provide a means to study aspects of this important phenomenon in vitro

    Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic.

    Get PDF
    BACKGROUND: Leprosy has afflicted humankind throughout history leaving evidence in both early texts and the archaeological record. In Britain, leprosy was widespread throughout the Middle Ages until its gradual and unexplained decline between the 14th and 16th centuries. The nature of this ancient endemic leprosy and its relationship to modern strains is only partly understood. Modern leprosy strains are currently divided into 5 phylogenetic groups, types 0 to 4, each with strong geographical links. Until recently, European strains, both ancient and modern, were thought to be exclusively type 3 strains. However, evidence for type 2 strains, a group normally associated with Central Asia and the Middle East, has recently been found in archaeological samples in Scandinavia and from two skeletons from the medieval leprosy hospital (or leprosarium) of St Mary Magdalen, near Winchester, England. RESULTS: Here we report the genotypic analysis and whole genome sequencing of two further ancient M. leprae genomes extracted from the remains of two individuals, Sk14 and Sk27, that were excavated from 10th-12th century burials at the leprosarium of St Mary Magdalen. DNA was extracted from the surfaces of bones showing osteological signs of leprosy. Known M. leprae polymorphisms were PCR amplified and Sanger sequenced, while draft genomes were generated by enriching for M. leprae DNA, and Illumina sequencing. SNP-typing and phylogenetic analysis of the draft genomes placed both of these ancient strains in the conserved type 2 group, with very few novel SNPs compared to other ancient or modern strains. CONCLUSIONS: The genomes of the two newly sequenced M. leprae strains group firmly with other type 2F strains. Moreover, the M. leprae strain most closely related to one of the strains, Sk14, in the worldwide phylogeny is a contemporaneous ancient St Magdalen skeleton, vividly illustrating the epidemic and clonal nature of leprosy at this site. The prevalence of these type 2 strains indicates that type 2F strains, in contrast to later European and associated North American type 3 isolates, may have been the co-dominant or even the predominant genotype at this location during the 11th century

    Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Get PDF
    Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusions Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors

    Immunogenicity in Clinical Practice and Drug Development: When is it Significant?

    Get PDF
    Managing immunogenicity in clinical practice and during drug development was a recent topic at the ASCPT 2019 annual meeting. This commentary expands on the discussion to facilitate a broader engagement across the community. The intent is to provide a rationale for ongoing research into the current gaps in assessing and interpreting immunogenicity in drug development and managing clinical immunogenicity for an approved drug. The following are highlighted: (i) Immunogenicity Considerations in Clinical Practice, (ii) Immunogenicity Testing and Current Limitations, (iii) Immunogenicity Risk Assessment and Mitigation, and (iv) Quantitative Systems Pharmacology (QSP) models of Immunogenicity
    • …
    corecore