107 research outputs found

    Spatially separated polar samples of the cis and trans conformers of 3-fluorophenol

    Full text link
    We demonstrate the spatial separation of the cis- and trans-conformers of 3-fluorophenol in the gas phase based on their distinct electric dipole moments. For both conformers we create very polar samples of their lowest-energy rotational quantum states. A >95 % pure beam of trans-3-fluorophenol and a >90 % pure beam of the lowest-energy rotational states of the less polar cis-3-fluorophenol were obtained for helium and neon supersonic expansions, respectively. This is the first demonstration of the spatial separation of the lowest-energy rotational states of the least polar conformer, which is necessary for strong alignment and orientation of all individual conformers.Comment: 5 pages, 5 figure

    Knife edge skimming for improved separation of molecular species by the deflector

    Full text link
    A knife edge for shaping a molecular beam is described to improve the spatial separation of the species in a molecular beam by the electrostatic deflector. The spatial separation of different molecular species from each other as well as from atomic seed gas is improved. The column density of the selected molecular-beam part in the interaction zone, which corresponds to higher signal rates, was enhanced by a factor of 1.5, limited by the virtual source size of the molecular beam.Comment: 3 pages, 2 figure

    Long-term trapping of Stark-decelerated molecules

    Get PDF
    Trapped cold molecules represent attractive systems for precision-spectroscopic studies and for investigations of cold collisions and chemical reactions. However, achieving their confinement for sufficiently long timescales remains a challenge. Here, we report the long-term trapping of Stark-decelerated OH radicals in their X (2)Pi(3/2) (nu = 0, J = 3/2, M-J = 3/2, f) state in a permanent magnetic trap. The trap environment is cryogenically cooled to a temperature of 17 K to suppress black-body-radiation-induced pumping of the molecules out of trappable quantum states and collisions with residual background gas molecules which usually limit the trap lifetime. The cold molecules are thus confined on timescales approaching minutes, an improvement of up to two orders of magnitude compared with room temperature experiments, at translational temperatures of similar to 25 mK. The present results pave the way for new experiments using trapped cold molecules in precision spectroscopy, in studies of slow chemical processes at low energies and in the quantum technologies

    Photophysics of indole upon x-ray absorption

    Full text link
    A photofragmentation study of gas-phase indole (C8_8H7_7N) upon single-photon ionization at a photon energy of 420 eV is presented. Indole was primarily inner-shell ionized at its nitrogen and carbon 1s1s orbitals. Electrons and ions were measured in coincidence by means of velocity map imaging. The angular relationship between ionic fragments is discussed along with the possibility to use the angle-resolved coincidence detection to perform experiments on molecules that are strongly oriented in their recoil-frame. The coincident measurement of electrons and ions revealed fragmentation-pathway-dependent electron spectra, linking the structural fragmentation dynamics to different electronic excitations. Evidence for photoelectron-impact self-ionization was observed.Comment: 11 pages, 6 figure

    Spatial separation of pyrrole and pyrrole-water clusters

    Full text link
    We demonstrate the spatial separation of pyrrole and pyrrole(H2_2O) clusters from the other atomic and molecular species in a supersonically-expanded beam of pyrrole and traces of water seeded in high-pressure helium gas. The experimental results are quantitatively supported by simulations. The obtained pyrrole(H2_2O) cluster beam has a purity of ~100 %. The extracted rotational temperature of pyrrole and pyrrole(H2_2O) from the original supersonic expansion is Trot=0.8±0.2T_\text{rot}=0.8\pm0.2 K, whereas the temperature of the deflected, pure-pyrrole(H2_2O) part of the molecular beam corresponds to Trot≈0.4T_\text{rot}\approx0.4 K

    Quo vadis? Seevögel und ihr mariner Lebensraum

    Get PDF

    Spin-State Transition and Metal-Insulator Transition in La1−x_{1-x}Eux_xCoO3_3}

    Full text link
    We present a study of the structure, the electric resistivity, the magnetic susceptibility, and the thermal expansion of La1−x_{1-x}Eux_xCoO3_3. LaCoO3_3 shows a temperature-induced spin-state transition around 100 K and a metal-insulator transition around 500 K. Partial substitution of La3+^{3+} by the smaller Eu3+^{3+} causes chemical pressure and leads to a drastic increase of the spin gap from about 190 K in LaCoO3_3 to about 2000 K in EuCoO3_3, so that the spin-state transition is shifted to much higher temperatures. A combined analysis of thermal expansion and susceptibility gives evidence that the spin-state transition has to be attributed to a population of an intermediate-spin state with orbital order for x<0.5x<0.5 and without orbital order for larger xx. In contrast to the spin-state transition, the metal-insulator transition is shifted only moderately to higher temperatures with increasing Eu content, showing that the metal-insulator transition occurs independently from the spin-state distribution of the Co3+^{3+} ions. Around the metal-insulator transition the magnetic susceptibility shows a similar increase for all xx and approaches a doping-independent value around 1000 K indicating that well above the metal-insulator transition the same spin state is approached for all xx.Comment: 10 pages, 6 figure
    • …
    corecore