62 research outputs found
Retinal Axonal Loss Begins Early in the Course of Multiple Sclerosis and Is Similar between Progressive Phenotypes
To determine whether retinal axonal loss is detectable in patients with a clinically isolated syndrome (CIS), a first clinical demyelinating attack suggestive of multiple sclerosis (MS), and examine patterns of retinal axonal loss across MS disease subtypes.Spectral-domain Optical Coherence Tomography was performed in 541 patients with MS, including 45 with high-risk CIS, 403 with relapsing-remitting (RR)MS, 60 with secondary-progressive (SP)MS and 33 with primary-progressive (PP)MS, and 53 unaffected controls. Differences in retinal nerve fiber layer (RNFL) thickness and macular volume were analyzed using multiple linear regression and associations with age and disease duration were examined in a cross-sectional analysis. In eyes without a clinical history of optic neuritis (designated as "eyes without optic neuritis"), the total and temporal peripapillary RNFL was thinner in CIS patients compared to controls (temporal RNFL by -5.4 µm [95% CI -0.9 to--9.9 µm, p = 0.02] adjusting for age and sex). The total (p = 0.01) and temporal (p = 0.03) RNFL was also thinner in CIS patients with clinical disease for less than 1 year compared to controls. In eyes without optic neuritis, total and temporal RNFL thickness was nearly identical between primary and secondary progressive MS, but total macular volume was slightly lower in the primary progressive group (p<0.05).Retinal axonal loss is increasingly prominent in more advanced stages of disease--progressive MS>RRMS>CIS--with proportionally greater thinning in eyes previously affected by clinically evident optic neuritis. Retinal axonal loss begins early in the course of MS. In the absence of clinically evident optic neuritis, RNFL thinning is nearly identical between progressive MS subtypes
Differential hypoglycaemic, anorectic, autonomic and emetic effects of the glucagon-like peptide receptor agonist, exendin-4, in the conscious telemetered ferret.
Background: Rodents are incapable of emesis and consequently the emetic potential of glucagon-like peptide-1 receptor (GLP-1R) agonists in studies designed to assess a potential blood glucose lowering action of the compound was missed. Therefore, we investigated if the ferret, a carnivore with demonstrated translation capability in emesis research, would identify the emetic potential of the GLP-1R agonist, exendin-4, and any associated effects on gastric motor function, appetite and cardiovascular homeostasis.
Methods: The biological activity of the GLP-1R ligands was investigated in vivo using a glucose tolerance test in pentobarbitone-anesthetised ferrets and in vitro using organ bath studies. Radiotelemetry was used to investigate the effect of exendin-4 on gastric myoelectric activity (GMA) and cardiovascular function in conscious ferrets; behaviour was also simultaneously assessed. Western blot was used to characterize GLP-1R distribution in the gastrointestinal and brain tissues.
Results: In anesthetised ferrets, exendin-4 (30 nmol/kg, s.c.) reduced experimentally elevated blood glucose levels by 36.3%, whereas the GLP-1R antagonist, exendin (9–39) (300 nmol/kg, s.c.) antagonised the effect and increased AUC0–120 by 31.0% when injected alone (P < 0.05). In animals with radiotelemetry devices, exendin-4 (100 nmol/kg, s.c.) induced emesis in 1/9 ferrets, but inhibited food intake and decreased heart rate variability (HRV) in all animals (P < 0.05). In the animals not exhibiting emesis, there was no effect on GMA, mean arterial blood pressure, heart rate, or core body temperature. In the ferret exhibiting emesis, there was a shift in the GMA towards bradygastria with a decrease in power, and a concomitant decrease in HRV. Western blot revealed GLP-1R throughout the gastrointestinal tract but exendin-4 (up to 300 nM) and exendin (9–39), failed to contract or relax isolated ferret gut tissues. GLP-1R were found in all major brain regions and the levels were comparable those in the vagus nerve.
Conclusions: Peripherally administered exendin-4 reduced blood glucose and inhibited feeding with a low emetic potential similar to that in humans (11% vs 12.8%). A disrupted GMA only occurred in the animal exhibiting emesis raising the possibility that disruption of the GMA may influence the probability of emesis occurring in response to treatment with GLP-1R agonists
Recruitment and Activation of RSK2 by HIV-1 Tat
The transcriptional activity of the integrated HIV provirus is dependent on the chromatin organization of the viral promoter and the transactivator Tat. Tat recruits the cellular pTEFb complex and interacts with several chromatin-modifying enzymes, including the histone acetyltransferases p300 and PCAF. Here, we examined the interaction of Tat with activation-dependent histone kinases, including the p90 ribosomal S6 kinase 2 (RSK2). Dominant-negative RSK2 and treatment with a small-molecule inhibitor of RSK2 kinase activity inhibited the transcriptional activity of Tat, indicating that RSK2 is important for Tat function. Reconstitution of RSK2 in cells from subjects with a genetic defect in RSK2 expression (Coffin-Lowry syndrome) enhanced Tat transactivation. Tat interacted with RSK2 and activated RSK2 kinase activity in cells. Both properties were lost in a mutant Tat protein (F38A) that is deficient in HIV transactivation. Our data identify a novel reciprocal regulation of Tat and RSK2 function, which might serve to induce early changes in the chromatin organization of the HIV LTR
Purinergic signalling and immune cells
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells
- …