11 research outputs found
Individual participant data meta-analysis of LR-5 in LI-RADS version 2018 versus revised LI-RADS for hepatocellular carcinoma diagnosis
Background
A simplification of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 (v2018), revised LI-RADS (rLI-RADS), has been proposed for imaging-based diagnosis of hepatocellular carcinoma (HCC). Single-site data suggest that rLI-RADS category 5 (rLR-5) improves sensitivity while maintaining positive predictive value (PPV) of the LI-RADS v2018 category 5 (LR-5), which indicates definite HCC.
Purpose
To compare the diagnostic performance of LI-RADS v2018 and rLI-RADS in a multicenter data set of patients at risk for HCC by performing an individual patient data meta-analysis.
Materials and Methods
Multiple databases were searched for studies published from January 2014 to January 2022 that evaluated the diagnostic performance of any version of LI-RADS at CT or MRI for diagnosing HCC. An individual patient data meta-analysis method was applied to observations from the identified studies. Quality Assessment of Diagnostic Accuracy Studies version 2 was applied to determine study risk of bias. Observations were categorized according to major features and either LI-RADS v2018 or rLI-RADS assignments. Diagnostic accuracies of category 5 for each system were calculated using generalized linear mixed models and compared using the likelihood ratio test for sensitivity and the Wald test for PPV.
Results
Twenty-four studies, including 3840 patients and 4727 observations, were analyzed. The median observation size was 19 mm (IQR, 11â30 mm). rLR-5 showed higher sensitivity compared with LR-5 (70.6% [95% CI: 60.7, 78.9] vs 61.3% [95% CI: 45.9, 74.7]; P < .001), with similar PPV (90.7% vs 92.3%; P = .55). In studies with low risk of bias (n = 4; 1031 observations), rLR-5 also achieved a higher sensitivity than LR-5 (72.3% [95% CI: 63.9, 80.1] vs 66.9% [95% CI: 58.2, 74.5]; P = .02), with similar PPV (83.1% vs 88.7%; P = .47).
Conclusion
rLR-5 achieved a higher sensitivity for identifying HCC than LR-5 while maintaining a comparable PPV at 90% or more, matching the results presented in the original rLI-RADS study
CT/MRI and CEUS LI-RADS Major Features Association with Hepatocellular Carcinoma: Individual Patient Data Meta-Analysis
Background The Liver Imaging Reporting and Data System (LI-RADS) assigns a risk category for hepatocellular carcinoma (HCC) to imaging observations. Establishing the contributions of major features can inform the diagnostic algorithm. Purpose To perform a systematic review and individual patient data meta-analysis to establish the probability of HCC for each LI-RADS major feature using CT/MRI and contrast-enhanced US (CEUS) LI-RADS in patients at high risk for HCC. Materials and Methods Multiple databases (MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and Scopus) were searched for studies from January 2014 to September 2019 that evaluated the accuracy of CT, MRI, and CEUS for HCC detection using LI-RADS (CT/MRI LI-RADS, versions 2014, 2017, and 2018; CEUS LI-RADS, versions 2016 and 2017). Data were centralized. Clustering was addressed at the study and patient levels using mixed models. Adjusted odds ratios (ORs) with 95% CIs were determined for each major feature using multivariable stepwise logistic regression. Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) (PROSPERO protocol: CRD42020164486). Results A total of 32 studies were included, with 1170 CT observations, 3341 MRI observations, and 853 CEUS observations. At multivariable analysis of CT/MRI LI-RADS, all major features were associated with HCC, except threshold growth (OR, 1.6; 95% CI: 0.7, 3.6; P = .07). Nonperipheral washout (OR, 13.2; 95% CI: 9.0, 19.2; P = .01) and nonrim arterial phase hyperenhancement (APHE) (OR, 10.3; 95% CI: 6.7, 15.6; P = .01) had stronger associations with HCC than enhancing capsule (OR, 2.4; 95% CI: 1.7, 3.5; P = .03). On CEUS images, APHE (OR, 7.3; 95% CI: 4.6, 11.5; P = .01), late and mild washout (OR, 4.1; 95% CI: 2.6, 6.6; P = .01), and size of at least 20 mm (OR, 1.6; 95% CI: 1.04, 2.5; P = .04) were associated with HCC. Twenty-five studies (78%) had high risk of bias due to reporting ambiguity or study design flaws. Conclusion Most Liver Imaging Reporting and Data System major features had different independent associations with hepatocellular carcinoma; for CT/MRI, arterial phase hyperenhancement and washout had the strongest associations, whereas threshold growth had no association. © RSNA, 2021 Online supplemental material is available for this article
Recommended from our members
A multicenter assessment of interreader reliability of LI-RADS version 2018 for MRI and CT
Background: Various limitations have impacted research evaluating reader agreement
for Liver Imaging-Reporting and Data System (LI-RADS).
Purpose: To assess reader agreement of LI-RADS in an international multi-center, multireader setting using scrollable images.
Materials and Methods: This retrospective study used de-identified clinical multiphase
CT and MRI examinations and reports with at least one untreated observation from six
institutions and three countries; only qualifying examinations were submitted.
Examination dates were October 2017 â August 2018 at the coordinating center. One
untreated observation per examination was randomly selected using observation
identifiers, and its clinically assigned features were extracted from the report. The
corresponding LI-RADS v2018 category was computed as a re-scored clinical read. Each
examination was randomly assigned to two of 43 research readers who independently
scored the observation. Agreement for an ordinal modified four-category LI-RADS scale
(LR-1/2, LR-3, LR-4, LR-5/M/tumor in vein) was computed using intra-class correlation
coefficients (ICC). Agreement was also computed for dichotomized malignancy (LR-4/LR5/LR-M/LR-tumor in vein), LR-5, and LR-M. Agreement was compared between researchversus-research reads and research-versus-clinical reads.
Results: 484 patients (mean age, 62 years ±10 [SD]; 156 women; 93 CT, 391 MRI) were
included. ICCs for ordinal LI-RADS, dichotomized malignancy, LR-5, and LR-M were 0.68
(95% CI: 0.62, 0.74), 0.63 (95% CI: 0.56, 0.71), 0.58 (95% CI: 0.50, 0.66), and 0.46 (95%
CI: 0.31, 0.61) respectively. Research-versus-research reader agreement was higher
than research-versus-clinical agreement for modified four-category LI-RADS (ICC, 0.68
vs. 0.62, P = .03) and for dichotomized malignancy (ICC, 0.63 vs. 0.53, P = .005), but not
for LR-5 (P = .14) or LR-M (P = .94).
Conclusion: There was moderate agreement for Liver Imaging-Reporting and Data
System v2018 overall. For some comparisons, research-versus-research reader
agreement was higher than research-versus-clinical reader agreement, indicating
differences between the clinical and research environments that warrant further study
All-sky Medium Energy Gamma-ray Observatory: Exploring the Extreme Multimessenger Universe
The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe class
mission concept that will provide essential contributions to multimessenger
astrophysics in the late 2020s and beyond. AMEGO combines high sensitivity in
the 200 keV to 10 GeV energy range with a wide field of view, good spectral
resolution, and polarization sensitivity. Therefore, AMEGO is key in the study
of multimessenger astrophysical objects that have unique signatures in the
gamma-ray regime, such as neutron star mergers, supernovae, and flaring active
galactic nuclei. The order-of-magnitude improvement compared to previous MeV
missions also enables discoveries of a wide range of phenomena whose energy
output peaks in the relatively unexplored medium-energy gamma-ray band
Recommended from our members
Portal Cavernoma Cholangiopathy
Abstract
Objectives
Portal cavernoma cholangiopathy (formerly portal biliopathy) is a type of biliary injury that occurs in association with a portal vein thrombus or cavernoma. Although the radiographic features of portal cavernoma cholangiopathy have been enumerated in the literature, its histologic features have not been described in detail.
Methods
We describe the histologic findings in liver specimens from three patients with radiologically confirmed portal cavernoma cholangiopathy.
Results
Of the three patients, one underwent surgical resection due to a clinical suspicion for cholangiocarcinoma, one had a liver biopsy sample obtained for evaluation of possible cirrhosis, and one had a clinically suspicious âhilar massâ at the time of orthotopic liver transplant. Histologic features common among the three liver specimens included portal venous abnormalities, where the portal veins were obliterated or small relative to the portal tract size, and obstructive biliary changes, such as ductular reaction and reactive epithelial atypia accompanied by a mixed inflammatory cell infiltrate with neutrophils.
Conclusions
This case series provides clinicopathologic characteristics of portal cavernoma cholangiopathy. Histologic changes are reminiscent of hepatoportal sclerosis and/or bile duct obstruction. Attention to portal veins can provide helpful diagnostic clues, especially when biopsy samples are obtained from patients with a known portal vein thrombus or cavernoma
Advancing the Landscape of Multimessenger Science in the Next Decade
Engel K, Lewis T, Muzio MS, et al. Advancing the Landscape of Multimessenger Science in the Next Decade. arXiv:2203.10074. 2022.The last decade has brought about a profound transformation in multimessenger
science. Ten years ago, facilities had been built or were under construction
that would eventually discover the nature of objects in our universe could be
detected through multiple messengers. Nonetheless, multimessenger science was
hardly more than a dream. The rewards for our foresight were finally realized
through IceCube's discovery of the diffuse astrophysical neutrino flux, the
first observation of gravitational waves by LIGO, and the first joint
detections in gravitational waves and photons and in neutrinos and photons.
Today we live in the dawn of the multimessenger era. The successes of the
multimessenger campaigns of the last decade have pushed multimessenger science
to the forefront of priority science areas in both the particle physics and the
astrophysics communities. Multimessenger science provides new methods of
testing fundamental theories about the nature of matter and energy,
particularly in conditions that are not reproducible on Earth. This white paper
will present the science and facilities that will provide opportunities for the
particle physics community renew its commitment and maintain its leadership in
multimessenger science