301 research outputs found

    Time-dependent Hamiltonian estimation for Doppler velocimetry of trapped ions

    Full text link
    The time evolution of a closed quantum system is connected to its Hamiltonian through Schroedinger's equation. The ability to estimate the Hamiltonian is critical to our understanding of quantum systems, and allows optimization of control. Though spectroscopic methods allow time-independent Hamiltonians to be recovered, for time-dependent Hamiltonians this task is more challenging. Here, using a single trapped ion, we experimentally demonstrate a method for estimating a time-dependent Hamiltonian of a single qubit. The method involves measuring the time evolution of the qubit in a fixed basis as a function of a time-independent offset term added to the Hamiltonian. In our system the initially unknown Hamiltonian arises from transporting an ion through a static, near-resonant laser beam. Hamiltonian estimation allows us to estimate the spatial dependence of the laser beam intensity and the ion's velocity as a function of time. This work is of direct value in optimizing transport operations and transport-based gates in scalable trapped ion quantum information processing, while the estimation technique is general enough that it can be applied to other quantum systems, aiding the pursuit of high operational fidelities in quantum control.Comment: 10 pages, 8 figure

    Sicherheitsforschung zur Endlagerung

    Get PDF

    Crack initiation and endurance limit of hard steels under multiaxial cyclic loads

    Get PDF
    The endurance limit and the mechanisms o f fatigue crack initiation in the high cycle regime were investigated using round specimens o f the bearing steel 52100 under longitudinal forces and torsional moments and combinations o f these loads. Three specimen types were examined: smooth specimens and specimens with circumferential notches with radii o f 1.0 and 0.2 mm. The influence ofmean and multiaxial stresses on the endurance limit can be understood by consideration ofcrack initiation mechanisms and micro-mechanics. Crack initiation took place at oxides, carbonitrides and at the surface. The mechanisms ofcrack initiation could be related to the load type: Loads with rotating principal stresses are more damaging fo r nitrides than fo r oxides. Increasing maximum stresses are more dangerous fo r nitrides than fo r oxides, and introduce more damage to the surface than to the nitrides. Normal stresses are more damaging fo r oxides than shear stresses. The endurance limits were calculated by means o f an extended weakest-link model which combines volume and surface crack initiation with related fatigue criteria. For volume crack initiation the criterion o f Dang Van was used. For the correct description o f the competing surface crack initiation, a new criterion was applied. With this concept, a prediction o f the endurance limit is possible fo r loads which produce critical planes and range within a limited regime ofstress ratios.Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€Π΅Π΄Π΅Π» выносливости ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ зароТдСния усталостных Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ Π² ΠΌΠ½ΠΎΠ³ΠΎΡ†ΠΈΠΊΠ»ΠΎΠ²ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΊΡ€ΡƒΠ³Π»Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΈΠ· подшипниковой стали 52100, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°Π΅ΠΌΡ‹Π΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½Ρ‹Ρ… сил ΠΈ крутящих ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ этих Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ. Использовали Π³Π»Π°Π΄ΠΊΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ с ΠΊΠΎΠ»ΡŒΡ†Π΅Π²Ρ‹ΠΌΠΈ Π½Π°Π΄Ρ€Π΅Π·Π°ΠΌΠΈ радиусами 1,0 ΠΈ 0,2 ΠΌΠΌ. ВлияниС срСдних ΠΈ многоосных напряТСний Π½Π° ΠΏΡ€Π΅Π΄Π΅Π» выносливости ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ объяснСно с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² зароТдСния Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ. Π—Π°Ρ€ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ происходило Π½Π° оксидах, ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ΄Π°Ρ… ΠΈ Π½Π° повСрхности. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ зароТдСния Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ связаны с Ρ‚ΠΈΠΏΠΎΠΌ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ: Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ с Π²Ρ€Π°Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π³Π»Π°Π²Π½Ρ‹ΠΌΠΈ напряТСниями Π±ΠΎΠ»Π΅Π΅ дСструктивны для Π½ΠΈΡ‚Ρ€ΠΈΠ΄ΠΎΠ², Ρ‡Π΅ΠΌ для оксидов. Π’ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ напряТСния Π±ΠΎΠ»Π΅Π΅ опасны для Π½ΠΈΡ‚Ρ€ΠΈΠ΄ΠΎΠ², Ρ‡Π΅ΠΌ для оксидов, ΠΈ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ большиС поврСТдСния повСрхности, Ρ‡Π΅ΠΌ Π½ΠΈΡ‚Ρ€ΠΈΠ΄ΠΎΠ². ΠΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ напряТСния Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ большСС ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ оксидов, Ρ‡Π΅ΠΌ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ напряТСния ΠŸΡ€Π΅Π΄Π΅Π»Ρ‹ выносливости рассчитывали с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ слабого Π·Π²Π΅Π½Π°, которая ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΡΠ΅Ρ‚ Π·Π°Ρ€ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ Π² объСмС ΠΈ Π½Π° повСрхности с ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ критСриями усталости. Для зароТдСния Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ Π² объСмС Π±Ρ‹Π» использован ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ Π”Π°Π½Π³ Π’Π°Π½Π°. Для ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΠ³ΠΎ описания ΠΊΠΎΠ½ΠΊΡƒΡ€ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ зароТдСния Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ Π½Π° повСрхности Π±Ρ‹Π» ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ этой ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π» выносливости для Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠΎΠ·Π΄Π°ΡŽΡ‚ критичСскиС плоскости ΠΈ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° коэффициСнтов асиммСтрии Ρ†ΠΈΠΊΠ»Π°
    • …
    corecore