301 research outputs found
Time-dependent Hamiltonian estimation for Doppler velocimetry of trapped ions
The time evolution of a closed quantum system is connected to its Hamiltonian
through Schroedinger's equation. The ability to estimate the Hamiltonian is
critical to our understanding of quantum systems, and allows optimization of
control. Though spectroscopic methods allow time-independent Hamiltonians to be
recovered, for time-dependent Hamiltonians this task is more challenging. Here,
using a single trapped ion, we experimentally demonstrate a method for
estimating a time-dependent Hamiltonian of a single qubit. The method involves
measuring the time evolution of the qubit in a fixed basis as a function of a
time-independent offset term added to the Hamiltonian. In our system the
initially unknown Hamiltonian arises from transporting an ion through a static,
near-resonant laser beam. Hamiltonian estimation allows us to estimate the
spatial dependence of the laser beam intensity and the ion's velocity as a
function of time. This work is of direct value in optimizing transport
operations and transport-based gates in scalable trapped ion quantum
information processing, while the estimation technique is general enough that
it can be applied to other quantum systems, aiding the pursuit of high
operational fidelities in quantum control.Comment: 10 pages, 8 figure
Crack initiation and endurance limit of hard steels under multiaxial cyclic loads
The endurance limit and the mechanisms o f fatigue crack initiation in the high cycle regime were
investigated using round specimens o f the bearing steel 52100 under longitudinal forces and
torsional moments and combinations o f these loads. Three specimen types were examined: smooth
specimens and specimens with circumferential notches with radii o f 1.0 and 0.2 mm. The influence
ofmean and multiaxial stresses on the endurance limit can be understood by consideration ofcrack
initiation mechanisms and micro-mechanics. Crack initiation took place at oxides, carbonitrides
and at the surface. The mechanisms ofcrack initiation could be related to the load type: Loads with
rotating principal stresses are more damaging fo r nitrides than fo r oxides. Increasing maximum
stresses are more dangerous fo r nitrides than fo r oxides, and introduce more damage to the surface
than to the nitrides. Normal stresses are more damaging fo r oxides than shear stresses. The
endurance limits were calculated by means o f an extended weakest-link model which combines
volume and surface crack initiation with related fatigue criteria. For volume crack initiation the
criterion o f Dang Van was used. For the correct description o f the competing surface crack
initiation, a new criterion was applied. With this concept, a prediction o f the endurance limit is
possible fo r loads which produce critical planes and range within a limited regime ofstress ratios.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΏΡΠ΅Π΄Π΅Π» Π²ΡΠ½ΠΎΡΠ»ΠΈΠ²ΠΎΡΡΠΈ ΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ
Π·Π°ΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΡΡΠ°Π»ΠΎΡΡΠ½ΡΡ
ΡΡΠ΅ΡΠΈΠ½ Π²
ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΠΊΠ»ΠΎΠ²ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΊΡΡΠ³Π»ΡΠ΅
ΠΎΠ±ΡΠ°Π·ΡΡ ΠΈΠ· ΠΏΠΎΠ΄ΡΠΈΠΏΠ½ΠΈΠΊΠΎΠ²ΠΎΠΉ ΡΡΠ°Π»ΠΈ 52100,
ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°Π΅ΠΌΡΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΡΠ½ΡΡ
ΡΠΈΠ» ΠΈ
ΠΊΡΡΡΡΡΠΈΡ
ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ
ΡΡΠΈΡ
Π½Π°Π³ΡΡΠ·ΠΎΠΊ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ Π³Π»Π°Π΄ΠΊΠΈΠ΅ ΠΎΠ±ΡΠ°Π·ΡΡ
ΠΈ ΠΎΠ±ΡΠ°Π·ΡΡ Ρ ΠΊΠΎΠ»ΡΡΠ΅Π²ΡΠΌΠΈ Π½Π°Π΄ΡΠ΅Π·Π°ΠΌΠΈ ΡΠ°Π΄ΠΈΡΡΠ°ΠΌΠΈ
1,0 ΠΈ 0,2 ΠΌΠΌ. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΡΠ΅Π΄Π½ΠΈΡ
ΠΈ
ΠΌΠ½ΠΎΠ³ΠΎΠΎΡΠ½ΡΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π½Π° ΠΏΡΠ΅Π΄Π΅Π» Π²ΡΠ½ΠΎΡΠ»ΠΈΠ²ΠΎΡΡΠΈ
ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΎ Ρ ΡΡΠ΅ΡΠΎΠΌ
ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π·Π°ΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΡΠ΅ΡΠΈΠ½ ΠΈ ΠΌΠΈΠΊΡΠΎΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ.
ΠΠ°ΡΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΡΠ΅ΡΠΈΠ½ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΠ»ΠΎ
Π½Π° ΠΎΠΊΡΠΈΠ΄Π°Ρ
, ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΡΡΠΈΠ΄Π°Ρ
ΠΈ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ.
ΠΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ Π·Π°ΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΡΠ΅ΡΠΈΠ½ ΠΌΠΎΠ³ΡΡ
Π±ΡΡΡ ΡΠ²ΡΠ·Π°Π½Ρ Ρ ΡΠΈΠΏΠΎΠΌ Π½Π°Π³ΡΡΠ·ΠΊΠΈ: Π½Π°Π³ΡΡΠ·ΠΊΠΈ
Ρ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ Π³Π»Π°Π²Π½ΡΠΌΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡΠΌΠΈ
Π±ΠΎΠ»Π΅Π΅ Π΄Π΅ΡΡΡΡΠΊΡΠΈΠ²Π½Ρ Π΄Π»Ρ Π½ΠΈΡΡΠΈΠ΄ΠΎΠ², ΡΠ΅ΠΌ
Π΄Π»Ρ ΠΎΠΊΡΠΈΠ΄ΠΎΠ². ΠΠΎΠ·ΡΠ°ΡΡΠ°ΡΡΠΈΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅
Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π±ΠΎΠ»Π΅Π΅ ΠΎΠΏΠ°ΡΠ½Ρ Π΄Π»Ρ Π½ΠΈΡΡΠΈΠ΄ΠΎΠ²,
ΡΠ΅ΠΌ Π΄Π»Ρ ΠΎΠΊΡΠΈΠ΄ΠΎΠ², ΠΈ Π²ΡΠ·ΡΠ²Π°ΡΡ Π±ΠΎΠ»ΡΡΠΈΠ΅ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ, ΡΠ΅ΠΌ Π½ΠΈΡΡΠΈΠ΄ΠΎΠ². ΠΠΎΡΠΌΠ°Π»ΡΠ½ΡΠ΅
Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π²ΡΠ·ΡΠ²Π°ΡΡ Π±ΠΎΠ»ΡΡΠ΅Π΅ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅
ΠΎΠΊΡΠΈΠ΄ΠΎΠ², ΡΠ΅ΠΌ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΡΠ΅Π΄Π΅Π»Ρ Π²ΡΠ½ΠΎΡΠ»ΠΈΠ²ΠΎΡΡΠΈ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°Π»ΠΈ
Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ»Π°Π±ΠΎΠ³ΠΎ
Π·Π²Π΅Π½Π°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½ΡΠ΅Ρ Π·Π°ΡΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅
ΡΡΠ΅ΡΠΈΠ½ Π² ΠΎΠ±ΡΠ΅ΠΌΠ΅ ΠΈ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌΠΈ
ΠΊΡΠΈΡΠ΅ΡΠΈΡΠΌΠΈ ΡΡΡΠ°Π»ΠΎΡΡΠΈ. ΠΠ»Ρ
Π·Π°ΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΡΠ΅ΡΠΈΠ½ Π² ΠΎΠ±ΡΠ΅ΠΌΠ΅ Π±ΡΠ» ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½
ΠΊΡΠΈΡΠ΅ΡΠΈΠΉ ΠΠ°Π½Π³ ΠΠ°Π½Π°. ΠΠ»Ρ ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎΠ³ΠΎ
ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΊΠΎΠ½ΠΊΡΡΠΈΡΡΡΡΠ΅Π³ΠΎ Π·Π°ΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΡΠ΅ΡΠΈΠ½
Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Π±ΡΠ» ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ Π½ΠΎΠ²ΡΠΉ
ΠΊΡΠΈΡΠ΅ΡΠΈΠΉ. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ
ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°ΡΡ ΠΏΡΠ΅Π΄Π΅Π» Π²ΡΠ½ΠΎΡΠ»ΠΈΠ²ΠΎΡΡΠΈ Π΄Π»Ρ Π½Π°Π³ΡΡΠ·ΠΎΠΊ,
ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΠ·Π΄Π°ΡΡ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ
ΠΈ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠ³ΠΎ
ΡΠ΅ΠΆΠΈΠΌΠ° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π°ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΡΠΈΠΊΠ»Π°
- β¦