424 research outputs found

    On the influence of the magnetic field of the GSI experimental storage ring on the time-modulation of the EC-decay rates of the H-like mother ions

    Full text link
    We investigate the influence of the magnetic field of the Experimental storage ring (ESR) at GSI on the periodic time-dependence of the orbital K-shell electron capture decay (EC(EC) rates of the H--like heavy ions. We approximate the magnetic field of the ESR by a uniform magnetic field. Unlike the assertion by Lambiase et al., arXiv: 0811.2302 [nucl-th], we show that a motion of the H-like heavy ion in a uniform magnetic field cannot be the origin of the periodic time-dependence of the EC-decay rates of the H-like heavy ions.Comment: 3 pages, 1 figur

    First Energy and Angle differential Measurements of e^+e^- -pairs emitted by Internal Pair Conversion of excited Heavy Nuclei

    Get PDF
    We present the first energy and angle resolved measurements of e+e- pairs emitted from heavy nuclei (Z>=40) at rest by internal pair conversion (IPC) of transitions with energies of less than 2MeV as well as recent theoretical results using the DWBA method, which takes full account of relativistic effects, magnetic substates and finite size of the nucleus. The 1.76MeV E0 transition in Zr90 (Sr source) and the 1.77MeV M1 transition in Pb207 (Bi source) have been investigated experimentally using the essentially improved set-up at the double-ORANGE beta-spectrometer of GSI. The measurements prove the capability of the setup to cleanly identify the IPC pairs in the presence of five orders of magnitude higher beta- and gamma background from the same source and to yield essentially background-free sum spectra despite the large background. Using the ability of the ORANGE setup to directly determine the opening angle of the e+e- pairs, the angular correlation of the emitted pairs was measured. In the Zr90 case the correlation could be deduced for a wide range of energy differences of the pairs. The Zr90 results are in good agreement with recent theory. The angular correlation deduced for the M1 transition in Pb207 is in strong disagreement with theoretical predictions derived within the Born approximation and shows almost isotropic character. This is again in agreement with the new theoretical results.Comment: LaTeX, 28 pages incl. 10 PS figures; Accepted by Z.Phys.

    New Way to Produce Dense Double-Antikaonic Dibaryon System, \bar{K}\bar{K} NN, through Lambda(1405)-Doorway Sticking in p+p Collisions

    Full text link
    A recent successful observation of a dense and deeply bound \bar{K} nuclear system, K^-pp, in the p + p \rightarrow K^+ + K^-pp reaction in a DISTO experiment indicates that the double-\bar{K} dibaryon, K^-K^-pp, which was predicted to be a dense nuclear system, can also be formed in p+p collisions. We find theoretically that the K^- -K^- repulsion plays no significant role in reducing the density and binding energy of K^-K^-pp and that, when two \Lambda(1405) resonances are produced simultaneously in a short-range p+p collision, they act as doorways to copious formation of K^-K^-pp, if and only if K^-K^-pp is a dense object, as predicted.Comment: 8 pages, 9 figures, Accepted Apr. 19, 201

    Extended Huckel theory for bandstructure, chemistry, and transport. II. Silicon

    Get PDF
    In this second paper, we develop transferable semi-empirical parameters for the technologically important material, silicon, using Extended Huckel Theory (EHT) to calculate its electronic structure. The EHT-parameters areoptimized to experimental target values of the band dispersion of bulk-silicon. We obtain a very good quantitative match to the bandstructure characteristics such as bandedges and effective masses, which are competitive with the values obtained within an sp3d5s∗sp^3 d^5 s^* orthogonal-tight binding model for silicon. The transferability of the parameters is investigated applying them to different physical and chemical environments by calculating the bandstructure of two reconstructed surfaces with different orientations: Si(100) (2x1) and Si(111) (2x1). The reproduced π\pi- and π∗\pi^*-surface bands agree in part quantitatively with DFT-GW calculations and PES/IPES experiments demonstrating their robustness to environmental changes. We further apply the silicon parameters to describe the 1D band dispersion of a unrelaxed rectangular silicon nanowire (SiNW) and demonstrate the EHT-approach of surface passivation using hydrogen. Our EHT-parameters thus provide a quantitative model of bulk-silicon and silicon-based materials such as contacts and surfaces, which are essential ingredients towards a quantitative quantum transport simulation through silicon-based heterostructures.Comment: 9 pages, 9 figure

    Positron spectra from internal pair conversion observed in {238}U + {181}Ta collisions

    Get PDF
    We present new results from measurements and simulations of positron spectra, originating from 238U + 181Ta collisions at beam energies close to the Coulomb barrier. The measurements were performed using an improved experimental setup at the double-Orange spectrometer of GSI. Particular emphasis is put on the signature of positrons from Internal-Pair-Conversion (IPC) processes in the measured e+ energy spectra, following the de-excitation of electromagnetic transitions in the moving Ta-like nucleus. It is shown by Monte Carlo simulations that, for the chosen current sweeping procedure used in the present experiments, positron emission from discrete IPC transitions can lead to rather narrow line structures in the measured energy spectra. The measured positron spectra do not show evidence for line structures within the statistical accuracy achieved, although expected from the intensities of the observed γ\gamma transitions (Eγ 1250−1600_{\gamma}~1250-1600 keV) and theoretical conversion coefficients. This is due to the reduced detection efficiency for IPC positrons, caused by the limited spatial and momentum acceptance of the spectrometer. A comparison with previous results, in which lines have been observed, is presented and the implications are discussed.Comment: LaTeX, 20 pages including 5 EPS figures; Accepted by Eur. Phys.Jour.

    New Results on e+e- Line Emission in U+Ta Collisions

    Full text link
    We present new results obtained from a series of follow-up e+e- coincidence measurements in heavy-ion collisions, utilizing an improved experimental set-up at the double-Orange beta-spectrometer of GSI. The collision system U+Ta was reinvestigated in three independent runs at beam energies in the range (6.0-6.4)xA MeV and different target thicknesses, with the objective to reproduce a narrow sum-energy e+e- line at ~635 keV observed previously in this collision system. At improved statistical accuracy, the line could not be found in these new data. For the ''fission'' scenario, an upper limit (1 sigma) on its production probability per collision of 1.3x10^{-8} can be set which has to be compared to the previously reported value of [4.9 +- 0.8 (stat.) +- 1.0 (syst)]x10^{-7}. In the light of the new results, a reanalysis of the old data shows that the continuous part of the spectrum at the line position is significantly higher than previously assumed, thus reducing the production probability of the line by a factor of two and its statistical significance to < 3.4sigma.Comment: 15 pages, standard LaTeX with 3 included PS figures; Submitted to Physics Letters
    • …
    corecore