811 research outputs found
In situ nanocompression testing of irradiated copper.
Increasing demand for energy and reduction of carbon dioxide emissions has revived interest in nuclear energy. Designing materials for radiation environments necessitates a fundamental understanding of how radiation-induced defects alter mechanical properties. Ion beams create radiation damage efficiently without material activation, but their limited penetration depth requires small-scale testing. However, strength measurements of nanoscale irradiated specimens have not been previously performed. Here we show that yield strengths approaching macroscopic values are measured from irradiated ~400 nm-diameter copper specimens. Quantitative in situ nanocompression testing in a transmission electron microscope reveals that the strength of larger samples is controlled by dislocation-irradiation defect interactions, yielding size-independent strengths. Below ~400 nm, size-dependent strength results from dislocation source limitation. This transition length-scale should be universal, but depends on material and irradiation conditions. We conclude that for irradiated copper, and presumably related materials, nanoscale in situ testing can determine bulk-like yield strengths and simultaneously identify deformation mechanisms
Locally Resolved Fracture Mechanisms By Using In-Situ Microscopic Testing
One of the most common reasons for materials failure is the nucleation and propagation of cracks, which makes the detailed understanding of these apparent failure processes a highly important topic from an engineering point of view. The field of fracture mechanics is growing since the 1950s through various theoretical and experimental works, but only the recent implementation of micromechanical testing devices in scanning electron microscopes (SEM), enables the possibility to observe in-situ crack propagation, with sub-micron resolution. The present work focuses on an experimental approach to evaluate crack propagation during micromechanical fracture experiments conducted in-situ in an SEM. Therefore, we utilize a continuous measurement of sample stiffness and crack length from both, experimentally measured force-displacement data as well as SEM images. The main advantage of such a combined method is the possibility of performing detailed analysis of non-linear elastic processes, frequently observed in relevant engineering materials. The current work aims to show challenges and solutions regarding the setup and implementation of such experiments, spanning from brittle model materials such as silicon to highly ductile metals
How the interface type manipulates the thermomechanical response of nanostructured metals : A case study on nickel
The presence of interfaces with nanoscale spacing significantly enhances the strength of materials, but also the rate controlling processes of plastic flow are subject to change. Due to the confined grain volumes, intragranular dislocation-dislocation interactions, the predominant processes at the micrometer scale, are replaced by emission of dislocations from and their subsequent accommodation at the interfaces. Both processes not only depend on the interfacial spacing, but also on the atomistic structure of the interface. Hence, a thorough understanding how these processes are affected by the interface structure is required to predict and improve the behavior of nanomaterials. The present study attempts to rationalize this effect by investigating the thermomechanical behavior of samples consisting of three different interfaces. Pure nickel samples with predominant fractions of low- and high-angle as well as twin boundaries with a similar average spacing around 150 nm are investigated using high temperature nanoindentation strain rate jump tests. Depending on the interface structure, hardness, strain rate sensitivity and apparent activation volumes evolve distinctively different with testing temperature. While in case of high-angle boundaries for all quantities a pronounced thermal dependence is found, the other two interface types behave almost athermal in the same temperature range. These differences can be rationalized based on the different interfacial diffusivity, affecting the predominant process of interfacial stress relaxation
How residual stresses affect the fracture properties of layered thin films
The continued miniaturization effort has revealed exciting new material behavior at small length scales, where pronounced size effects come into play and material properties are subject to change. This has led to the development of miniaturized testing techniques to determine local plastic properties. So far, however, only few efforts regarding the determination of residual stresses and fracture properties in miniaturized systems were made.
In this presentation, we will focus on recent developments regarding the measurement of residual stresses and miniaturized fracture properties using FIB based sample preparation and in situ SEM experiments. The depth resolved residual film stresses are determined by an improved stepwise beam layer removal method [1]. From the same film systems, beams are FIB fabricated for miniaturized fracture testing in the SEM [2]. We will discuss the general possibilities, challenges, and benefits of these approaches by examining the internal stresses and fracture properties of single layer and multilayer thin films in the immiscible system Cu-W. Particular emphasis is placed on the effect of residual stresses on the fracture properties. Moreover, possible limitations of commonly used data analysis approaches are addressed, and related improvements using finite element modelling to determine crack-driving forces in the presence of interfaces and residual stresses are presented [3]. Notably, the required material input data in terms of flow behavior for this modeling approach was determined using spherical nanoindentation experiments on single and multilayer films. Finally, the possibility of further miniaturization of such experiments by using in situ TEM is demonstrated [4]
Towards predictive modelling of near-edge structures in electron energy loss spectra of AlN based ternary alloys
Although electron energy loss near edge structure analysis provides a tool
for experimentally probing unoccupied density of states, a detailed comparison
with simulations is necessary in order to understand the origin of individual
peaks. This paper presents a density functional theory based technique for
predicting the N K-edge for ternary (quasi-binary) nitrogen alloys by adopting
a core hole approach, a methodology that has been successful for binary nitride
compounds. It is demonstrated that using the spectra of binary compounds for
optimising the core hole charge ( for cubic TiAlN
and for wurtzite AlGaN), the predicted spectra
evolutions of the ternary alloys agree well with the experiments. The spectral
features are subsequently discussed in terms of the electronic structure and
bonding of the alloys.Comment: 11 pages, 9 figures, 1 tabl
Spectroscopy of Ne for the thermonuclear O()Ne and F()O reaction rates
Uncertainties in the thermonuclear rates of the
O()Ne and F()O reactions
affect model predictions of light curves from type I X-ray bursts and the
amount of the observable radioisotope F produced in classical novae,
respectively. To address these uncertainties, we have studied the nuclear
structure of Ne over MeV and MeV using
the F(He,t)Ne reaction. We find the values of the
4.14 and 4.20 MeV levels to be consistent with and
respectively, in contrast to previous assumptions. We confirm the recently
observed triplet of states around 6.4 MeV, and find evidence that the state at
6.29 MeV, just below the proton threshold, is either broad or a doublet. Our
data also suggest that predicted but yet unobserved levels may exist near the
6.86 MeV state. Higher resolution experiments are urgently needed to further
clarify the structure of Ne around the proton threshold before a
reliable F()O rate for nova models can be determined.Comment: 5 pages, 3 figures, Phys. Rev. C (in press
New determinations of gamma-ray line intensities of the Ep = 550 keV and Ep = 1747 keV resonances of the 13-C(p,gamma)14-N reaction
Gamma-ray angular distributions for the resonances at Ep = 550 keV and 1747
keV of the radiative capture reaction 13-C(p,g)14-N have been measured, using
intense proton beams on isotopically pure 13-C targets. Relative intensities
for the strongest transitions were extracted with an accuracy of typically five
per cent, making these resonances new useful gamma-ray standards for efficiency
calibration in the energy range Egamma = 1.6 to 9 MeV.Comment: 17 pages, 6 figures, Nuclear Instruments and Methods, Sec. A,
accepte
Selective interface toughness measurements of layered thin films
Driven by the ongoing miniaturization and increasing integration in microelectronics devices, very thin metallic films became ever more important in recent years. Accordingly also the capability of determining specific physical and mechanical properties of such arrangements gained increasing importance. Miniaturized testing methods to evaluate, for example, the mechanical properties of thin metallic multilayers are therefore indispensable. A novel in-situ micromechanical approach is examined in the current study and compared to existing methods regarding their capability to determine the interface toughness of specific interfaces in multilayer configurations. Namely, sputter deposited copper and tungsten thin films with a thickness of approx. 500 nm on a stress-free silicon (100) substrate are investigated. The multilayer stacks consist of different materials that vary in microstructure, elastic properties and residual stress state. We examine the interface toughness via double cantilever beam tests, nanoindentation and novel miniaturized shear tests. The choice of a proper test method is indispensable when addressing strong interfaces, such as the W-Cu interface, in the presence of weaker ones. Finally, it is demonstrated that miniaturized shear testing is a very promising approach to test such strong interfaces as the interface of interest to fail is predefined by the sample geometry
Development of an Anger camera in Lanthanum Bromide for gamma-ray space astronomy in the MeV range
International audienceLanthanum bromide is a very promising scintillator material for the next generation of g-ray telescopes. We present in this paper first g-ray imaging results obtained by coupling a LaBr3 crystal with a position-sensitive 8×8 multianode photomultiplier tube to form a simple Anger camera module. The readout of the 64 signals is carried out with the most recent evolution of the MultiAnode ReadOut Chip (MAROC) which was initially designed for the luminometer of the ATLAS detector. Measured charge distributions are compared with detailed GEANT4 simulations that include the tracking of the optical photons produced in the scintillation crystal. The depth of interaction (d.o.i.) of 662-keV g-rays inside the crystal is derived from the charge distributions using an artificial neural network. We obtain for an irradiation at detector centre a mean standard deviation of the d.o.i. of 1.69 mm. Such a position-sensitive g-ray detector can form an innovative building block for a future space calorimete
- …