84 research outputs found

    Flow-Cytometric Phosphoprotein Analysis Reveals Agonist and Temporal Differences in Responses of Murine Hematopoietic Stem/Progenitor Cells

    Get PDF
    Hematopoietic stem cells (HSCs) are probably the best-studied adult tissue-restricted stem cells. Although methods for flow cytometric detection of phosphoproteins in hematopoeitic progenitors and mature cells are available, analogous protocols for HSC are lacking. We present a robust method to study intracellular signaling in immunophenotypically-defined murine HSC/progenitor cell (HPC)-enriched populations. Using this method, we uncover differences in the response dynamics of several phosphoproteins representative of the Ras/MAP-Kinase(K), PI3K, mTOR and Jak/STAT pathways in HSC/HPCs stimulated by Scf, Thpo, as well as several other important HSC/HPC agonists

    Very Small Embryonic-Like Stem Cells Purified from Umbilical Cord Blood Lack Stem Cell Characteristics

    Get PDF
    Very small embryonic-like (VSEL) cells have been described as putatively pluripotent stem cells present in murine bone marrow and human umbilical cord blood (hUCB) and as such are of high potential interest for regenerative medicine. However, there remain some questions concerning the precise identity and properties of VSEL cells, particularly those derived from hUCB. For this reason, we have carried out an extensive characterisation of purified populations of VSEL cells from a large number of UCB samples. Consistent with a previous report, we find that VSEL cells are CXCR4+, have a high density, are indeed significantly smaller than HSC and have an extremely high nuclear/cytoplasmic ratio. Their nucleoplasm is unstructured and stains strongly with Hoechst 33342. A comprehensive FACS screen for surface markers characteristic of embryonic, mesenchymal, neuronal or hematopoietic stem cells revealed negligible expression on VSEL cells. These cells failed to expand in vitro under a wide range of culture conditions known to support embryonic or adult stem cell types and a microarray analysis revealed the transcriptional profile of VSEL cells to be clearly distinct both from well-defined populations of pluripotent and adult stem cells and from the mature hematopoietic lineages. Finally, we detected an aneuploid karyotype in the majority of purified VSEL cells by fluorescence in situ hybridisation. These data support neither an embryonic nor an adult stem cell like phenotype, suggesting rather that hUCB VSEL cells are an aberrant and inactive population that is not comparable to murine VSEL cells

    The Secret Life of the Anthrax Agent Bacillus anthracis: Bacteriophage-Mediated Ecological Adaptations

    Get PDF
    Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities

    Epigenetic Signatures of Cigarette Smoking

    Get PDF
    BACKGROUND: DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders. METHODS AND RESULTS: To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15 907 blood-derived DNA samples from participants in 16 cohorts (including 2433 current, 6518 former, and 6956 never smokers). Comparing current versus never smokers, 2623 cytosine-phosphate-guanine sites (CpGs), annotated to 1405 genes, were statistically significantly differentially methylated at Bonferroni threshold of P<1Γ—10βˆ’7^{-7} (18 760 CpGs at false discovery rate <0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases, and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant P<1Γ—10βˆ’7^{-7} (2623 CpGs at false discovery rate <0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs. CONCLUSIONS: Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biological effects of smoking and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke.Biotechnology and Biological Sciences Research Council, British Heart Foundation, Cancer Research UK, Medical Research Council, National Institutes of Health, Royal Society, Wellcome Trus

    A meta-analysis of genome-wide association studies identifies multiple longevity genes

    Get PDF
    Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) epsilon 4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE epsilon 2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity

    Desmoplastic Fibroma of the Maxillary Sinus

    No full text

    A Phase I trial of the farnesyltransferase inhibitor L-778,123 and radiotherapy for locally advanced lung and head and neck cancer.

    No full text
    PURPOSE: Preclinical data have demonstrated that farnesyltransferaseinhibitors (FTIs) are radiation sensitizers in selected cell lines. The objective of this Phase I trial was to determine the maximally tolerated dose of the FTI L-778,123 in combination with radiotherapy in non-small cell lung cancer (NSCLC) and head and neck cancer (HNC). EXPERIMENTAL DESIGN: L-778,123 was given by continuous i.v. infusion and dose escalated in conjunction with standard radiotherapy. The presence of a ras mutation was not required for study entry. RESULTS: Nine patients (six NSCLC patients and three HNC patients) were enrolled on two dose levels of FTI. No dose-limiting toxicities were observed at the first dose level of 280 mg/m2/day during weeks 1, 2, 4, and 5 of radiotherapy. One episode of dose-limiting toxicity, grade IV neutropenia, was observed in one of three patients treated at 560 mg/m2/day during weeks 1, 2, 4, 5, and 7. No episodes of dose-limiting mucositis, esophagitis, or pneumonitis were observed. Of the four patients with NSCLC with evaluable disease, three patients had a complete response to treatment and one patient had a partial response. A complete clinical response to treatment was observed in two patients with HNC. In vitro studies in tumor cells obtained from a NSCLC patient on this trial showed radiosensitization with FTI and that tumor cells accumulated in G2-M after L-778,123 treatment. CONCLUSIONS: The combination of L-778,123 and radiotherapy at dose level 1 is associated with acceptable toxicity. Local responses have been observed in four NSCLC patients without a clear increase in radiotherapy-associated toxicities
    • …
    corecore