206 research outputs found

    Design and characterization of dielectric filled TM110_{110} microwave cavities for ultrafast electron microscopy

    Get PDF
    Microwave cavities oscillating in the TM110_{110} mode can be used as dynamic electron-optical elements inside an electron microscope. By filling the cavity with a dielectric material it becomes more compact and power efficient, facilitating the implementation in an electron microscope. However, the incorporation of the dielectric material makes the manufacturing process more difficult. Presented here are the steps taken to characterize the dielectric material, and to reproducibly fabricate dielectric filled cavities. Also presented are two versions with improved capabilities. The first, called a dual-mode cavity, is designed to support two modes simultaneously. The second has been optimized for low power consumption. With this optimized cavity a magnetic field strength of 2.84 Β±\pm 0.07 mT was generated at an input power of 14.2 Β±\pm 0.2 W. Due to the low input powers and small dimensions, these dielectric cavities are ideal as electron-optical elements for electron microscopy setups

    Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    Get PDF
    Fractional no. d. measurements for a radiofrequency plasma needle operating at atm. pressure were obtained using a mol. beam mass spectrometer (MBMS) system designed for diagnostics of atm. plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility as a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a He/air mixt. In particular, data for the conversion of atm. O and N into nitric oxide are discussed with ref. to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery. [on SciFinder (R)

    Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome

    Get PDF
    The 5β€²-untranslated region of the hepatitis C virus (HCV) RNA contains a highly structured motif called IRES (Internal Ribosome Entry Site) responsible for the cap-independent initiation of the viral RNA translation. At first, the IRES binds to the 40S subunit without any initiation factors so that the initiation AUG codon falls into the P site. Here using an original site-directed cross-linking strategy, we identified 40S subunit components neighboring subdomain IIId, which is critical for HCV IRES binding to the subunit, and apical loop of domain II, which was suggested to contact the 40S subunit from data on cryo-electron microscopy of ribosomal complexes containing the HCV IRES. HCV IRES derivatives that bear a photoactivatable group at nucleotide A275 or at G263 in subdomain IIId cross-link to ribosomal proteins S3a, S14 and S16, and HCV IRES derivatized at the C83 in the apex of domain II cross-link to proteins S14 and S16

    Numerical description of discharge characteristics of the plasma needle

    Get PDF
    The plasma needle is a small atmospheric, nonthermal, radio-frequency discharge, generated at the tip of a needle, which can be used for localized disinfection of biological tissues. Although several experiments have characterized various qualities of the plasma needle, discharge characteristics and electrical properties are still not well known. In order to provide initial estimates on electrical properties and quantities such as particle densities, we employed a two-dimensional, time-dependent fluid model to describe the plasma needle. In this model the balance equation is solved in the drift-diffusion approach for various species and the electron energy, as well as Poisson's equation. We found that the plasma production occurs in the sheath region and results in a steady flux of reactive species outwards. Even at small (< 0.1%) admixtures of N-2 to the He background, N-2(+) is the dominant ion. The electron density is typically 10(11) cm(-3) and the dissipated power is in the order of 10 mW. These results are consistent with the experimental data available and can give direction to the practical development of the plasma needle. (c) 2005 American Institute of Physics

    The 5β€² Leader of the mRNA Encoding the Mouse Neurotrophin Receptor TrkB Contains Two Internal Ribosomal Entry Sites that Are Differentially Regulated

    Get PDF
    A single internal ribosomal entry site (IRES) in conjunction with IRES transactivating factors (ITAFs) is sufficient to recruit the translational machinery to a eukaryotic mRNA independent of the cap structure. However, we demonstrate that the mouse TrkB mRNA contains two independent IRESes. The mouse TrkB mRNA consists of one of two 5β€² leaders (1428 nt and 448 nt), both of which include the common 3β€² exon (Ex2, 344 nt). Dicistronic RNA transfections and in vitro translation of monocistronic RNA demonstrated that both full-length 5β€² leaders, as well as Ex2, exhibit IRES activity indicating the IRES is located within Ex2. Additional analysis of the upstream sequences demonstrated that the first 260 nt of exon 1 (Ex1a) also contains an IRES. Dicistronic RNA transfections into SH-SY5Y cells showed the Ex1a IRES is constitutively active. However, the Ex2 IRES is only active in response to retinoic acid induced neural differentiation, a state which correlates with the synthesis of the ITAF polypyrimidine tract binding protein (PTB1). Correspondingly, addition or knock-down of PTB1 altered Ex2, but not Ex1a IRES activity in vitro and ex vivo, respectively. These results demonstrate that the two functionally independent IRESes within the mouse TrkB 5β€² leader are differentially regulated, in part by PTB1

    Clinically relevant potential drug-drug interactions in intensive care patients:A large retrospective observational multicenter study

    Get PDF
    Purpose: Potential drug-drug interactions (pDDIs) may harm patients admitted to the Intensive Care Unit (ICU). Due to the patient's critical condition and continuous monitoring on the ICU, not all pDDIs are clinically relevant. Clinical decision support systems (CDSSs) warning for irrelevant pDDIs could result in alert fatigue and overlooking important signals. Therefore, our aim was to describe the frequency of clinically relevant pDDIs (crpDDIs) to enable tailoring of CDSSs to the ICU setting. Materials & methods: In this multicenter retrospective observational study, we used medication administration data to identify pDDIs in ICU admissions from 13 ICUs. Clinical relevance was based on a Delphi study in which intensivists and hospital pharmacists assessed the clinical relevance of pDDIs for the ICU setting. Results: The mean number of pDDIs per 1000 medication administrations was 70.1, dropping to 31.0 when considering only crpDDIs. Of 103,871 ICU patients, 38% was exposed to a crpDDI. The most frequently occurring crpDDIs involve QT-prolonging agents, digoxin, or NSAIDs. Conclusions: Considering clinical relevance of pDDIs in the ICU setting is important, as only half of the detected pDDIs were crpDDIs. Therefore, tailoring CDSSs to the ICU may reduce alert fatigue and improve medication safety in ICU patients

    Comparisons between Chemical Mapping and Binding to Isoenergetic Oligonucleotide Microarrays Reveal Unexpected Patterns of Binding to the Bacillus subtilis RNase P RNA Specificity Domain†

    Get PDF
    ABSTRACT: Microarrays with isoenergetic pentamer and hexamer 20-O-methyl oligonucleotide probes with LNA (locked nucleic acid) and 2,6-diaminopurine substitutions were used to probe the binding sites on theRNase P RNA specificity domain of Bacillus subtilis. Unexpected binding patterns were revealed. Because of their enhanced binding free energies, isoenergetic probes can break short duplexes, merge adjacent loops, and/or induce refolding. This suggests new approaches to the rational design of short oligonucleotide therapeutics but limits the utility of microarrays for providing constraints for RNA structure determination. The microarray results are compared to results from chemical mapping experiments, which do provide constraints. Results from both types of experiments indicate that the RNase P RNA folds similarly in 1MNaΓΎ and 10 mMMg2ΓΎ. Binding of RNA to RNA is important for many natural func-tions, includingproteinsynthesis (1,2), translationregulation (3,4), gene silencing (5, 6), metabolic regulation (7), RNAmodification (8, 9), etc. (10-13). Binding of oligonucleotides toRNAs is impor-tant for therapeutic approaches, such as siRNA, ribozymes, and antisense therapy (14, 15).Much remains to bediscovered, however, of the rules for predicting binding sites andpotential therapeutics
    • …
    corecore