5,023 research outputs found
Psychophysical identity and free energy
An approach to implementing variational Bayesian inference in biological
systems is considered, under which the thermodynamic free energy of a system
directly encodes its variational free energy. In the case of the brain, this
assumption places constraints on the neuronal encoding of generative and
recognition densities, in particular requiring a stochastic population code.
The resulting relationship between thermodynamic and variational free energies
is prefigured in mind-brain identity theses in philosophy and in the Gestalt
hypothesis of psychophysical isomorphism.Comment: 22 pages; published as a research article on 8/5/2020 in Journal of
the Royal Society Interfac
Quantum Gravity Equation In Schroedinger Form In Minisuperspace Description
We start from classical Hamiltonian constraint of general relativity to
obtain the Einstein-Hamiltonian-Jacobi equation. We obtain a time parameter
prescription demanding that geometry itself determines the time, not the matter
field, such that the time so defined being equivalent to the time that enters
into the Schroedinger equation. Without any reference to the Wheeler-DeWitt
equation and without invoking the expansion of exponent in WKB wavefunction in
powers of Planck mass, we obtain an equation for quantum gravity in
Schroedinger form containing time. We restrict ourselves to a minisuperspace
description. Unlike matter field equation our equation is equivalent to the
Wheeler-DeWitt equation in the sense that our solutions reproduce also the
wavefunction of the Wheeler-DeWitt equation provided one evaluates the
normalization constant according to the wormhole dominance proposal recently
proposed by us.Comment: 11 Pages, ReVTeX, no figur
A dynamic model of Venus's gravity field
Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage
Lithium hydroxide dihydrate: A new type of icy material at elevated pressure
We show that, in addition to the known monohydrate, LiOH forms a dihydrate at elevated pressure. The dihydrate involves a large number of H-bonds establishing chains along the direction. In addition, the energy surface exhibits a saddle point for proton locations along certain O interatomic distances, a feature characteristic for superprotonic conductors. However, MD simulations indicate that LiOH·2H_2O is not a superprotonic conductor and suggest the relevant interpolyhedral O–O distances being too large to allow for proton transfer between neighboring Li-coordinated polyhedra at least on the time scale of the MD-simulations
Quantization in black hole backgrounds
Quantum field theory in a semiclassical background can be derived as an
approximation to quantum gravity from a weak-coupling expansion in the inverse
Planck mass. Such an expansion is studied for evolution on "nice-slices" in the
spacetime describing a black hole of mass M. Arguments for a breakdown of this
expansion are presented, due to significant gravitational coupling between
fluctuations, which is consistent with the statement that existing calculations
of information loss in black holes are not reliable. For a given fluctuation,
the coupling to subsequent fluctuations becomes of order unity by a time of
order M^3. Lack of a systematic derivation of the weakly-coupled/semiclassical
approximation would indicate a role for the non-perturbative dynamics of
gravity, and possibly for the proposal that such dynamics has an essentially
non-local quality.Comment: 28 pages, 4 figures, harvmac. v2: added refs, minor clarification
The Coherence of Primordial Fluctuations Produced During Inflation
The behaviour of quantum metric perturbations produced during inflation is
considered at the stage after the second Hubble radius crossing. It is shown
that the classical correlation between amplitude and momentum of a perturbation
mode, previously shown to emerge in the course of an effective
quantum-to-classical transition, is maintained for a sufficiently long time,
and we present the explicit form in which it takes place using the Wigner
function. We further show with a simple diffraction experiment that quantum
interference, non-expressible in terms of a classical stochastic description of
the perturbations, is essentially suppressed. Rescattering of the perturbations
leads to a comparatively slow decay of this correlation and to a complete
stochastization of the system.Comment: LaTeX (7 pages
Wetland mapping from digitized aerial photography
Computer assisted interpretation of small scale aerial imagery was found to be a cost effective and accurate method of mapping complex vegetation patterns if high resolution information is desired. This type of technique is suited for problems such as monitoring changes in species composition due to environmental factors and is a feasible method of monitoring and mapping large areas of wetlands. The technique has the added advantage of being in a computer compatible form which can be transformed into any georeference system of interest
Origin of the inflationary Universe
We give a consistent description of how the inflationary Universe emerges in
quantum cosmology. This involves two steps: Firstly, it is shown that a
sensible probability peak can be obtained from the cosmological wave function.
This is achieved by going beyond the tree level of the semiclassical expansion.
Secondly, due to decoherence interference terms between different semiclassical
branches are negligibly small. The results give constraints on the particle
content of a unified theory.Comment: LATEX, 6 pages, selected for honorable mention in the 1999 Essay
Competition of the Gravity Research Foundation. To appear in Mod. Phys. Lett.
Symmetries,Singularities and the De-Emergence of Space
Recent work has revealed intriguing connections between a
Belinsky-Khalatnikov-Lifshitz-type analysis of spacelike singularities in
General Relativity and certain infinite dimensional Lie algebras, and in
particular the `maximally extended' hyperbolic Kac--Moody algebra E10. In this
essay we argue that these results may lead to an entirely new understanding of
the (quantum) nature of space(-time) at the Planck scale, and hence -- via an
effective `de-emergence' of space near a singularity -- to a novel mechanism
for achieving background independence in quantum gravity.Comment: 10 page
Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N-2 thermometry
This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=ol-34-23-3755. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Peer reviewedPublisher PD
- …
