334 research outputs found

    The folded state of long duplex-DNA chain reflects its solution history

    Get PDF
    The higher-order structure of compacted single giant DNA induced by complexation with polypeptide (poly-Arg) in NaCl solution was investigated using fluorescence microscopy. As the poly-Arg concentration increased, the mean size of extended DNA chains gradually decreased. In the presence of excess poly-Arg, individual DNA chains collapsed into compact globules, and the degree of collapse of the DNA chains depended not only on the concentration of poly-Arg, but also on the time course of the addition of poly-Arg and NaCl, indicating that the structure of the collapsed DNA is not determined simply according to the minimum free energy. We discuss theoretically the presence of multiple-stationary states based on a consideration of simple kinetics in the process of binding. Depending on the past history, the number of poly-Arg and Na+ that bind to each DNA changes markedly. This interesting characteristic of long DNA is discussed in relation to the possible mechanism of self-regulation of gene expression in living cells

    Rigidity Matching between Cells and the Extracellular Matrix Leads to the Stabilization of Cardiac Conduction

    Get PDF
    Biomechanical dynamic interactions between cells and the extracellular environment dynamically regulate physiological tissue behavior in living organisms, such as that seen in tissue maintenance and remodeling. In this study, the substrate-induced modulation of synchronized beating in cultured cardiomyocyte tissue was systematically characterized on elasticity-tunable substrates to elucidate the effect of biomechanical coupling. We found that myocardial conduction is significantly promoted when the rigidity of the cell culture environment matches that of the cardiac cells (4 kiloPascals). The stability of spontaneous target wave activity and calcium transient alternans in high frequency-paced tissue were both enhanced when the cell substrate and cell tissue showed the same rigidity. By adapting a simple theoretical model, we reproduced the experimental trend on the rigidity matching for the synchronized excitation. We conclude that rigidity matching in cell-to-substrate interactions critically improves cardiomyocyte-tissue synchronization, suggesting that mechanical coupling plays an essential role in the dynamic activity of the beating heart

    Protein-protein interactions of the hyperthermophilic archaeon Pyrococcus horikoshii OT3

    Get PDF
    BACKGROUND: Although 2,061 proteins of Pyrococcus horikoshii OT3, a hyperthermophilic archaeon, have been predicted from the recently completed genome sequence, the majority of proteins show no similarity to those from other organisms and are thus hypothetical proteins of unknown function. Because most proteins operate as parts of complexes to regulate biological processes, we systematically analyzed protein-protein interactions in Pyrococcus using the mammalian two-hybrid system to determine the function of the hypothetical proteins. RESULTS: We examined 960 soluble proteins from Pyrococcus and selected 107 interactions based on luciferase reporter activity, which was then evaluated using a computational approach to assess the reliability of the interactions. We also analyzed the expression of the assay samples by western blot, and a few interactions by in vitro pull-down assays. We identified 11 hetero-interactions that we considered to be located at the same operon, as observed in Helicobacter pylori. We annotated and classified proteins in the selected interactions according to their orthologous proteins. Many enzyme proteins showed self-interactions, similar to those seen in other organisms. CONCLUSION: We found 13 unannotated proteins that interacted with annotated proteins; this information is useful for predicting the functions of the hypothetical Pyrococcus proteins from the annotations of their interacting partners. Among the heterogeneous interactions, proteins were more likely to interact with proteins within the same ortholog class than with proteins of different classes. The analysis described here can provide global insights into the biological features of the protein-protein interactions in P. horikoshii

    Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency

    Get PDF
    Mounting evidence indicated that human mesenchymal stem cells (hMSCs) are responsive not only to biochemical but also to physical cues, such as substrate topography and stiffness. To simulate the dynamic structures of extracellular environments of the marrow in vivo, we designed a novel surrogate substrate for marrow derived hMSCs based on physically cross-linked hydrogels whose elasticity can be adopted dynamically by chemical stimuli. Under frequent mechanical stress, hMSCs grown on our hydrogel substrates maintain the expression of STRO-1 over 20 d, irrespective of the substrate elasticity. On exposure to the corresponding induction media, these cultured hMSCs can undergo adipogenesis and osteogenesis without requiring cell transfer onto other substrates. Moreover, we demonstrated that our surrogate substrate suppresses the proliferation of hMSCs by up to 90% without any loss of multiple lineage potential by changing the substrate elasticity every 2nd days. Such “dynamic in vitro niche” can be used not only for a better understanding of the role of dynamic mechanical stresses on the fate of hMSCs but also for the synchronized differentiation of adult stem cells to a specific lineage

    Sub-micron sized saccharide fibres via electrospinning

    Get PDF
    In this work, the production of continuous submicron diameter saccharide fibres is shown to be possible using the electrospinning process. The mechanism for the formation of electrospun polymer fibres is usually attributed to the physical entanglement of long molecular chains. The ability to electrospin continuous fibre from a low molecular weight saccharides was an unexpected phenomenon. The formation of sub-micron diameter “sugar syrup” fibres was observed in situ using high speed video. The trajectory of the electrospun saccharide fibre was observed to follow that typical of electrospun polymers. Based on initial food grade glucose syrup tests, various solutions based on combinations of syrup components, i.e. mono-, di- and tri-saccharides, were investigated to map out materials and electrospinning conditions that would lead to the formation of fibre. This work demonstrated that sucrose exhibits the highest propensity for fibre formation during electrospinning amongst the various types of saccharide solutions studied. The possibility of electrospinning low molecular weight saccharides into sub-micron fibres has implications for the electrospinability of supramolecular polymers and other biomaterial

    Persistent Cellular Motion Control and Trapping Using Mechanotactic Signaling

    Get PDF
    Chemotactic signaling and the associated directed cell migration have been extensively studied owing to their importance in emergent processes of cellular aggregation. In contrast, mechanotactic signaling has been relatively overlooked despite its potential for unique ways to artificially signal cells with the aim to effectively gain control over their motile behavior. The possibility of mimicking cellular mechanotactic signals offers a fascinating novel strategy to achieve targeted cell delivery for in vitro tissue growth if proven to be effective with mammalian cells. Using (i) optimal level of extracellular calcium ([Ca2[superscript +] ][subscript ext] = 3 mM) we found, (ii) controllable fluid shear stress of low magnitude (σ < 0.5 Pa), and (iii) the ability to swiftly reverse flow direction (within one second), we are able to successfully signal Dictyostelium discoideum amoebae and trigger migratory responses with heretofore unreported control and precision. Specifically, we are able to systematically determine the mechanical input signal required to achieve any predetermined sequences of steps including straightforward motion, reversal and trapping. The mechanotactic cellular trapping is achieved for the first time and is associated with a stalling frequency of 0.06 ~ 0.1 Hz for a reversing direction mechanostimulus, above which the cells are effectively trapped while maintaining a high level of directional sensing. The value of this frequency is very close to the stalling frequency recently reported for chemotactic cell trapping [Meier B, et al. (2011) Proc Natl Acad Sci USA 108:11417–11422], suggesting that the limiting factor may be the slowness of the internal chemically-based motility apparatus.SUTD-MIT International Design Centre (Grant IDG31400104

    Hydroxyapatite Mineralization on the Calcium Chloride Blended Polyurethane Nanofiber via Biomimetic Method

    Get PDF
    Polyurethane nanofibers containing calcium chloride (CaCl2) were prepared via an electrospinning technique for the biomedical applications. Polyurethane nanofibers with different concentration of CaCl2 were electrospun, and their bioactivity evaluation was conducted by incubating in biomimetic simulated body fluid (SBF) solution. The morphology, structure and thermal properties of the polyurethane/CaCl2 composite nanofibers were characterized by means of scanning electron microscopy (SEM), field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetry. SEM images revealed that the CaCl2 salt incorporated homogeneously to form well-oriented nanofibers with smooth surface and uniform diameters along their lengths. The SBF incubation test confirmed the formation of apatite-like materials, exhibiting enhanced bioactive behavior of the polyurethane/CaCl2 composite nanofibers. This study demonstrated that the electrospun polyurethane containing CaCl2 composite nanofibers enhanced the in vitro bioactivity and supports the growth of apatite-like materials

    Inherent Interfacial Mechanical Gradients in 3D Hydrogels Influence Tumor Cell Behaviors

    Get PDF
    Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel was supported on a rigid glass substrate, an interface which computational techniques revealed to yield relative stiffening close to the rigid substrate support. To explore the influence of these gradients in 3D, hydrogels of varying Matrigel content were synthesized and the morphology, spreading, actin organization, and migration of glioblastoma multiforme (GBM) tumor cells were examined at the lowest (<50 µm) and highest (>500 µm) gel positions. GBMs adopted bipolar morphologies, displayed actin stress fiber formation, and evidenced fast, mesenchymal migration close to the substrate, whereas away from the interface, they adopted more rounded or ellipsoid morphologies, displayed poor actin architecture, and evidenced slow migration with some amoeboid characteristics. Mechanical gradients produced via edge effects could be observed with other hydrogels and substrates and permit observation of responses to multiple mechanical environments in a single hydrogel. Thus, hydrogel-support edge effects could be used to explore mechanosensitivity in a single 3D hydrogel system and should be considered in 3D hydrogel cell culture systems
    corecore