370 research outputs found
Effect of Harmonicity on the Detection of a Signal in a Complex Masker and on Spatial Release from Masking
The amount of masking of sounds from one source (signals) by sounds from a competing source (maskers) heavily depends on the sound characteristics of the masker and the signal and on their relative spatial location. Numerous studies investigated the ability to detect a signal in a speech or a noise masker or the effect of spatial separation of signal and masker on the amount of masking, but there is a lack of studies investigating the combined effects of many cues on the masking as is typical for natural listening situations. The current study using free-field listening systematically evaluates the combined effects of harmonicity and inharmonicity cues in multi-tone maskers and cues resulting from spatial separation of target signal and masker on the detection of a pure tone in a multi-tone or a noise masker. A linear binaural processing model was implemented to predict the masked thresholds in order to estimate whether the observed thresholds can be accounted for by energetic masking in the auditory periphery or whether other effects are involved. Thresholds were determined for combinations of two target frequencies (1 and 8 kHz), two spatial configurations (masker and target either co-located or spatially separated by 90 degrees azimuth), and five different masker types (four complex multi-tone stimuli, one noise masker). A spatial separation of target and masker resulted in a release from masking for all masker types. The amount of masking significantly depended on the masker type and frequency range. The various harmonic and inharmonic relations between target and masker or between components of the masker resulted in a complex pattern of increased or decreased masked thresholds in comparison to the predicted energetic masking. The results indicate that harmonicity cues affect the detectability of a tonal target in a complex masker
Recommended from our members
Results of the MAJORANA DEMONSTRATOR's Search for Double-Beta Decay of 76Ge to Excited States of 76Se
The MAJORANA DEMONSTRATOR is searching for double-beta decay of 76Ge to excited states (E.S.) in 76Se using a modular array of high purity Germanium detectors. 76Ge can decay into three E.S.s of 76Se. The E.S. decays have a clear event signature consisting of a ββ-decay with the prompt emission of one or two γ-rays, resulting in with high probability in a multi-site event. The granularity of the DEMONSTRATOR detector array enables powerful discrimination of this event signature from backgrounds. Using 21.3 kg-y of isotopic exposure, the DEMONSTRATOR has set world leading limits for each E.S. decay, with 90% CL lower half-life limits in the range of (0.56 2.1) ⋅ 1024 y. In particular, for the 2v transition to the first 0+ E.S. of 76Se, a lower half-life limit of 0.68 ⋅ 1024 at 90% CL was achieved
[(18)F]FDG-PET/CT metabolic parameters as useful prognostic factors in cervical cancer patients treated with chemo-radiotherapy.
To compare the prognostic value of different anatomical and functional metabolic parameters determined using [(18)F]FDG-PET/CT with other clinical and pathological prognostic parameters in cervical cancer (CC).
Thirty-eight patients treated with standard curative doses of chemo-radiotherapy (CRT) underwent pre- and post-therapy [(18)F]FDG-PET/CT. [(18)F]FDG-PET/CT parameters including mean tumor standardized uptake values (SUV), metabolic tumor volume (MTV) and tumor glycolytic volume (TGV) were measured before the start of CRT. The post-treatment tumor metabolic response was evaluated. These parameters were compared to other clinical prognostic factors. Survival curves were estimated by using the Kaplan-Meier method. Cox regression analysis was performed to determine the independent contribution of each prognostic factor.
After 37 months of median follow-up (range, 12-106), overall survival (OS) was 71 % [95 % confidence interval (CI), 54-88], disease-free survival (DFS) 61 % [95 % CI, 44-78] and loco-regional control (LRC) 76 % [95 % CI, 62-90]. In univariate analyses the [(18)F]FDG-PET/CT parameters unfavorably influencing OS, DFS and LRC were pre-treatment TGV-cutoff ≥562 (37 vs. 76 %, p = 0.01; 33 vs. 70 %, p = 0.002; and 55 vs. 83 %, p = 0.005, respectively), mean pre-treatment tumor SUV cutoff ≥5 (57 vs. 86 %, p = 0.03; 36 vs. 88 %, p = 0.004; 65 vs. 88 %, p = 0.04, respectively) and a partial tumor metabolic response after treatment (9 vs. 29 %, p = 0.0008; 0 vs. 83 %, p < 0.0001; 22 vs. 96 %, p < 0.0001, respectively). After multivariate analyses a partial tumor metabolic response after treatment remained as an independent prognostic factor unfavorably influencing DFS and LRC (RR 1:7.7, p < 0.0001, and RR 1:22.6, p = 0.0003, respectively) while the pre-treatment TGV-cutoff ≥562 negatively influenced OS and DFS (RR 1:2, p = 0.03, and RR 1:2.75, p = 0.05).
Parameters capturing the pre-treatment glycolytic volume and metabolic activity of [(18)F]FDG-positive disease provide important prognostic information in patients with CC treated with CRT. The post-therapy [(18)F]FDG-PET/CT uptake (partial tumor metabolic response) is predictive of disease outcome
Recommended from our members
ADC Nonlinearity Correction for the Majorana Demonstrator
Imperfections in analog-to-digital conversion (ADC) cannot be ignored when signal digitization requirements demand both wide dynamic range and high resolution, as is the case for the Majorana Demonstrator 76Ge neutrinoless double-beta decay search. Enabling the experiment's high-resolution spectral analysis and efficient pulse shape discrimination required careful measurement and correction of ADC nonlinearities. A simple measurement protocol was developed that did not require sophisticated equipment or lengthy data-taking campaigns. A slope-dependent hysteresis was observed and characterized. A correction applied to digitized waveforms prior to signal processing reduced the differential and integral nonlinearities by an order of magnitude, eliminating these as dominant contributions to the systematic energy uncertainty at the double-beta decay Q value
Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci
The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed
Allele-Specific Gene Expression Is Widespread Across the Genome and Biological Processes
Allelic specific gene expression (ASGE) appears to be an important factor in human phenotypic variability and as a consequence, for the development of complex traits and diseases. In order to study ASGE across the human genome, we have performed a study in which genotyping was coupled with an analysis of ASGE by screening 11,500 SNPs using the Mapping 10 K Array to identify differential allelic expression. We found that from the 5,133 SNPs that were suitable for analysis (heterozygous in our sample and expressed in peripheral blood mononuclear cells), 2,934 (57%) SNPs had differential allelic expression. Such SNPs were equally distributed along human chromosomes and biological processes. We validated the presence or absence of ASGE in 18 out 20 SNPs (90%) randomly selected by real time PCR in 48 human subjects. In addition, we observed that SNPs close to -but not included in- segmental duplications had increased levels of ASGE. Finally, we found that transcripts of unknown function or non-coding RNAs, also display ASGE: from a total of 2,308 intronic SNPs, 1510 (65%) SNPs underwent differential allelic expression. In summary, ASGE is a widespread mechanism in the human genome whose regulation seems to be far more complex than expected
Sensitivity is not an intrinsic property of a diagnostic test: empirical evidence from histological diagnosis of Helicobacter pylori infection
<p>Abstract</p> <p>Background</p> <p>We aimed to provide empirical evidence of how spectrum effects can affect the sensitivity of histological assessment of <it>Helicobacter pylori </it>infection, which may contribute to explain the heterogeneity in prevalence estimates across populations with expectedly similar prevalence.</p> <p>Methods</p> <p>Cross-sectional evaluation of dyspeptic subjects undergoing upper digestive endoscopy, including collection of biopsy specimens from the greater curvature of the antrum for assessment of <it>H. pylori </it>infection by histopathological study and polymerase chain reaction (PCR), from Portugal (n = 106) and Mozambique (n = 102) following the same standardized protocol.</p> <p>Results</p> <p>In the Portuguese sample the prevalence of infection was 95.3% by histological assessment and 98.1% by PCR. In the Mozambican sample the prevalence was 63.7% and 93.1%, respectively. Among those classified as infected by PCR, the sensitivity of histological assessment was 96.2% among the Portuguese and 66.3% among the Mozambican. Among those testing positive by both methods, 5.0% of the Portuguese and 20.6% of the Mozambican had mild density of colonization.</p> <p>Conclusions</p> <p>This study shows a lower sensitivity of histological assessment of <it>H. pylori </it>infection in Mozambican dyspeptic patients compared to the Portuguese, which may be explained by differences in the density of colonization, and may contribute to explain the heterogeneity in prevalence estimates across African settings.</p
Improved Resolution Haplogroup G Phylogeny in the Y Chromosome, Revealed by a Set of Newly Characterized SNPs
Background: Y-SNP haplogroup G (hgG), defined by Y-SNP marker M201, is relatively uncommon in the United States general population, with only 8 additional sub-markers characterized. Many of the previously described eight sub-markers are either very rare (2–4%) or do not distinguish between major populations within this hg. In fact, prior to the current study, only 2 % of our reference Caucasian population belonged to hgG and all of these individuals were in sub-haplogroup G2a, defined by P15. Additional Y-SNPs are needed in order to differentiate between individuals within this haplogroup. Principal Findings: In this work we have investigated whether we could differentiate between a population of 63 hgG individuals using previously uncharacterized Y-SNPs. We have designed assays to test these individuals using all known hgG SNPs (n = 9) and an additional 16 unreported/undefined Y-SNPS. Using a combination of DNA sequence and genetic genealogy databases, we have uncovered a total of 15 new hgG SNPs that had been previously reported but not phylogenetically characterized. Ten of the new Y-SNPs are phylogenetically equivalent to M201, one is equivalent to P15 and, interestingly, four create new, separate haplogroups. Three of the latter are more common than many of the previously defined Y-SNPs. Y-STR data from these individuals show that DYS385*12 is present in (70%) of G2a3b1-U13 individuals while only 4 % of non-G2a3b1-U13 individuals posses the DYS385*12 allele. Conclusions: This study uncovered several previously undefined Y-SNPs by using data from several database sources. Th
High Diversity of vacA and cagA Helicobacter pylori Genotypes in Patients with and without Gastric Cancer
BACKGROUND: Helicobacter pylori is associated with chronic gastritis, peptic ulcers, and gastric cancer. The aim of this study was to assess the topographical distribution of H. pylori in the stomach as well as the vacA and cagA genotypes in patients with and without gastric cancer. METHODOLOGY/PRINCIPAL FINDINGS: Three gastric biopsies, from predetermined regions, were evaluated in 16 patients with gastric cancer and 14 patients with dyspeptic symptoms. From cancer patients, additional biopsy specimens were obtained from tumor centers and margins; among these samples, the presence of H. pylori vacA and cagA genotypes was evaluated. Positive H. pylori was 38% and 26% in biopsies obtained from the gastric cancer and non-cancer groups, respectively (p = 0.008), and 36% in tumor sites. In cancer patients, we found a preferential distribution of H. pylori in the fundus and corpus, whereas, in the non-cancer group, the distribution was uniform (p = 0.003). A majority of the biopsies were simultaneously cagA gene-positive and -negative. The fundus and corpus demonstrated a higher positivity rate for the cagA gene in the non-cancer group (p = 0.036). A mixture of cagA gene sizes was also significantly more frequent in this group (p = 0.003). Ninety-two percent of all the subjects showed more than one vacA gene genotype; s1b and m1 vacA genotypes were predominantly found in the gastric cancer group. The highest vacA-genotype signal-sequence diversity was found in the corpus and 5 cm from tumor margins. CONCLUSION/SIGNIFICANCE: High H. pylori colonization diversity, along with the cagA gene, was found predominantly in the fundus and corpus of patients with gastric cancer. The genotype diversity observed across systematic whole-organ and tumor sampling was remarkable. We find that there is insufficient evidence to support the association of one isolate with a specific disease, due to the multistrain nature of H. pylori infection shown in this work
Impact of seasonal variation, age and smoking status on human semen parameters: The Massachusetts General Hospital experience
BACKGROUND: To investigate the relationship of human semen parameters with season, age and smoking status. METHODS: The present study used data from subjects recruited into an ongoing cross-sectional study on the relationship between environmental agents and semen characteristics. Our population consisted of 306 patients who presented to the Vincent Memorial Andrology Laboratory of Massachusetts General Hospital for semen evaluation. Sperm concentration and motility were measured with computer aided sperm analysis (CASA). Sperm morphology was scored using Tygerberg Kruger strict criteria. Regression analyses were used to investigate the relationships between semen parameters and season, age and smoking status, adjusting for abstinence interval. RESULTS: Sperm concentration in the spring was significantly higher than in winter, fall and summer (p < 0.05). There was suggestive evidence of higher sperm motility and percent of sperm with normal morphology in the spring than in the other seasons. There were no statistically significant relationships between semen parameters and smoking status, though current smokers tended to have lower sperm concentration. We also did not find a statistically significant relationship between age and semen parameters. CONCLUSIONS: We found seasonal variations in sperm concentration and suggestive evidence of seasonal variation in sperm motility and percent sperm with normal morphology. Although smoking status was not a significant predictor of semen parameters, this may have been due to the small number of current smokers in the study
- …