5 research outputs found

    Systems Immunology Analyses Following Porcine Respiratory and Reproductive Syndrome Virus Infection and Vaccination.

    Get PDF
    This study was initiated to better understand the nature of innate immune responses and the relatively weak and delayed immune response against porcine reproductive and respiratory syndrome virus (PRRSV). Following modified live virus (MLV) vaccination or infection with two PRRSV-2 strains, we analyzed the transcriptome of peripheral blood mononuclear cells collected before and at three and seven days after vaccination or infection. We used blood transcriptional modules (BTMs)-based gene set enrichment analyses. BTMs related to innate immune processes were upregulated by PRRSV-2 strains but downregulated by MLV. In contrast, BTMs related to adaptive immune responses, in particular T cells and cell cycle, were downregulated by PRRSV-2 but upregulated by MLV. In addition, we found differences between the PRRSV strains. Only the more virulent strain induced a strong platelet activation, dendritic cell activation, interferon type I and plasma cell responses. We also calculated the correlations of BTM with the neutralizing antibody and the T-cell responses. Early downregulation (day 0-3) of dendritic cell and B-cell BTM correlated to both CD4 and CD8 T-cell responses. Furthermore, a late (day 3-7) upregulation of interferon type I modules strongly correlated to helper and regulatory T-cell responses, while inflammatory BTM upregulation correlated more to CD8 T-cell responses. BTM related to T cells had positive correlations at three days but negative associations at seven days post-infection. Taken together, this work contributes to resolve the complexity of the innate and adaptive immune responses against PRRSV and indicates a fundamentally different immune response to the less immunogenic MLV compared to field strains which induced robust adaptive immune responses. The identified correlates of T-cell responses will facilitate a rational approach to improve the immunogenicity of MLV

    Thermo-Catalytic Reforming (TCR)–An important link between waste management and renewable fuels as part of the energy transition

    Get PDF
    The significant progress in energy demands and limited fossil fuel sources, together with environmental concerns, have enforced the study of green, renewable, and sustainable energy sources. Biomass and its residues can be converted into valued fuels and chemicals through advanced thermal conversion technologies. Pyrolysis has been used for a long time for charcoal formation, while intermediate and fast pyrolysis technologies have become of considerable interest in recent years. This substantial interest is because these processes provide different bio-products (synthesis gas, bio-oil and biochar), which can be used directly in numerous applications or as a sustainable energy carrier. This paper investigates an overview of the fundamentals of Thermo-Catalytic Reforming (TCR) technology which is a novel intermediate pyrolysis process combined with a post catalytic reforming unit. This study also identifies the TCR process's features and advantages compared to other pyrolysis technologies, followed by a technical scale unit and the transfer of intermediates in final products. Finally, the treatment of effluents, heat management and implementation of such technologies are discussed. This paper shows how a continuous pyrolysis/reforming plant has been developed and established based on targeted reactor design and in conjunction with preventing major effluent streams, which could have a major impact on the technology's commercial success. Along with two major European projects (To-Syn-Fuel and GreenFlexJET), the TCR technology shall help to overcome the dependency on fossil crude oil and fuels

    DEA Praktikum Köln 23/24

    No full text

    Visions of Globalization: Inequality and Political Stability

    No full text
    corecore