42 research outputs found

    Decision Making as a Window on Cognition

    Get PDF
    A decision is a commitment to a proposition or plan of action based on information and values associated with the possible outcomes. The process operates in a flexible timeframe that is free from the immediacy of evidence acquisition and the real time demands of action itself. Thus, it involves deliberation, planning, and strategizing. This Perspective focuses on perceptual decision making in nonhuman primates and the discovery of neural mechanisms that support accuracy, speed, and confidence in a decision. We suggest that these mechanisms expose principles of cognitive function in general, and we speculate about the challenges and directions before the field

    Learning probabilistic neural representations with randomly connected circuits

    Get PDF
    The brain represents and reasons probabilistically about complex stimuli and motor actions using a noisy, spike-based neural code. A key building block for such neural computations, as well as the basis for supervised and unsupervised learning, is the ability to estimate the surprise or likelihood of incoming high-dimensional neural activity patterns. Despite progress in statistical modeling of neural responses and deep learning, current approaches either do not scale to large neural populations or cannot be implemented using biologically realistic mechanisms. Inspired by the sparse and random connectivity of real neuronal circuits, we present a model for neural codes that accurately estimates the likelihood of individual spiking patterns and has a straightforward, scalable, efficient, learnable, and realistic neural implementation. This model’s performance on simultaneously recorded spiking activity of >100 neurons in the monkey visual and prefrontal cortices is comparable with or better than that of state-of-the-art models. Importantly, the model can be learned using a small number of samples and using a local learning rule that utilizes noise intrinsic to neural circuits. Slower, structural changes in random connectivity, consistent with rewiring and pruning processes, further improve the efficiency and sparseness of the resulting neural representations. Our results merge insights from neuroanatomy, machine learning, and theoretical neuroscience to suggest random sparse connectivity as a key design principle for neuronal computation

    Toward the neural implementation of structure learning

    Get PDF
    Despite significant advances in neuroscience, the neural bases of intelligence remain poorly understood. Arguably the most elusive aspect of intelligence is the ability to make robust inferences that go far beyond one's experience. Animals categorize objects, learn to vocalize and may even estimate causal relationships -all in the face of data that is often ambiguous and sparse. Such inductive leaps are thought to result from the brain's ability to infer latent structure that governs the environment. However, we know little about the neural computations that underlie this ability. Recent advances in developing computational frameworks that can support efficient structure learning and inductive inference may provide insight into the underlying component processes and help pave the path for uncovering their neural implementation

    Three challenges for connecting model to mechanism in decision-making

    No full text
    Recent years have seen a growing interest in understanding the neural mechanisms that support decision-making. The advent of new tools for measuring and manipulating neurons, alongside the inclusion of multiple new animal models and sensory systems has led to the generation of many novel datasets. The potential for these new approaches to constrain decision-making models is unprecedented. Here, we argue that to fully leverage these new approaches, three challenges must be met. First, experimenters must design well-controlled behavioral experiments that make it possible to distinguish competing behavioral strategies. Second, analyses of neural responses should think beyond single neurons, taking into account tradeoffs of single-trial versus trial-averaged approaches. Finally, quantitative model comparisons should be used, but must consider common obstacles

    A neural mechanism of speed-accuracy tradeoff in macaque area LIP.

    No full text
    Decision making often involves a tradeoff between speed and accuracy. Previous studies indicate that neural activity in the lateral intraparietal area (LIP) represents the gradual accumulation of evidence toward a threshold level, or evidence bound, which terminates the decision process. The level of this bound is hypothesized to mediate the speed-accuracy tradeoff. To test this, we recorded from LIP while monkeys performed a motion discrimination task in two speed-accuracy regimes. Surprisingly, the terminating threshold levels of neural activity were similar in both regimes. However, neurons recorded in the faster regime exhibited stronger evidence-independent activation from the beginning of decision formation, effectively reducing the evidence-dependent neural modulation needed for choice commitment. Our results suggest that control of speed vs accuracy may be exerted through changes in decision-related neural activity itself rather than through changes in the threshold applied to such neural activity to terminate a decision
    corecore