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The brain represents and reasons probabilistically about complex
stimuli and motor actions using a noisy, spike-based neural code.
A key building block for such neural computations, as well as the
basis for supervised and unsupervised learning, is the ability to
estimate the surprise or likelihood of incoming high-dimensional
neural activity patterns. Despite progress in statistical modeling of
neural responses and deep learning, current approaches either do
not scale to large neural populations or cannot be implemented
using biologically realistic mechanisms. Inspired by the sparse and
random connectivity of real neuronal circuits, we present a model
for neural codes that accurately estimates the likelihood of indi-
vidual spiking patterns and has a straightforward, scalable, effi-
cient, learnable, and realistic neural implementation. This model’s
performance on simultaneously recorded spiking activity of >100
neurons in the monkey visual and prefrontal cortices is compara-
ble with or better than that of state-of-the-art models. Importantly,
the model can be learned using a small number of samples and
using a local learning rule that utilizes noise intrinsic to neural cir-
cuits. Slower, structural changes in random connectivity, consistent
with rewiring and pruning processes, further improve the effi-
ciency and sparseness of the resulting neural representations. Our
results merge insights from neuroanatomy, machine learning, and
theoretical neuroscience to suggest random sparse connectivity as
a key design principle for neuronal computation.

neural circuits | population codes | sparse nonlinear random projections |
learning rules | cortical computation

The majority of neurons in the central nervous system know
about the external world only by observing the activity of

other neurons. Neural circuits must therefore learn to represent
information and reason based on the regularities and structure
in spiking patterns coming from upstream neurons, in a largely
unsupervised manner. Since the mapping from stimuli to neu-
ral responses (and back) is probabilistic (1–3) and the spaces
of stimuli and responses are exponentially large, neural circuits
must be performing a form of statistical inference by generalizing
from the previously observed spiking patterns (4–7). Neverthe-
less, circuit mechanisms that may implement such probabilistic
computations remain largely unknown.

A biologically plausible neural architecture that would allow
for such probabilistic computations would ideally be scalable
and could be trained by a local learning rule in an unsuper-
vised fashion. Current approaches satisfy some, but not all of
the above properties. Top-down approaches suggest biologically
plausible circuits that solve particular computational tasks but
often rely on explicit “teaching signals” or do not even spec-
ify how learning could take place (8–14). It is widely debated
how a teaching signal could reach each neuron at the correct
time and be interpreted properly (also known as the credit
assignment problem). Notably, an architecture designed for a
particular task will typically not support other computations, as
observed in the brain. Lastly, current top-down models relate
to neural data on a qualitative level, falling short of reproduc-
ing the detailed statistical structure of neural activity across large

neural populations. In contrast, bottom-up approaches grounded
in probabilistic modeling, statistical physics, or deep neural net-
works can yield concise and accurate models of the joint activity
of neural populations in an unsupervised fashion (15–27). Unfor-
tunately, these models are difficult to relate to the mechanistic
aspects of neural circuit operation or computation because they
use architectures and learning rules that are nonbiological or
nonscalable.

A neural circuit that would learn to estimate the probabil-
ity of its inputs would merge these two approaches: rather than
implementing particular tasks or extracting specific stimulus fea-
tures, computing the likelihood of the input gives a universal
“currency” for the neural computation of different circuits. Such
circuits could be used and reused by the brain as a recurring
motif, in a modular and hierarchical manner for a variety of
sensory, motor, and cognitive contexts, as well as for feature
learning. This would remove the need for many specialized
circuits for different computations. Consequently, it would facili-
tate the adoption of new functions by existing brain circuitry and
may serve as an evolutionary principle for creating new modules
that communicate and interact with the old ones. The idea that
the brain computes the probability of its inputs is supported by
evidence of responses to novel inputs or events (28, 29) and has
been explored in different contexts such as the hippocampal (30),
olfactory (31), and visual (32) systems, as well as in the role of
dopamine (33).

Significance

We present a theory of neural circuits’ design and function,
inspired by the random connectivity of real neural circuits and
the mathematical power of random projections. Specifically,
we introduce a family of statistical models for large neural
population codes, a straightforward neural circuit architec-
ture that would implement these models, and a biologically
plausible learning rule for such circuits. The resulting neural
architecture suggests a design principle for neural circuit—
namely, that they learn to compute the mathematical surprise
of their inputs, given past inputs, without an explicit teaching
signal. We applied these models to recordings from large neu-
ral populations in monkeys’ visual and prefrontal cortices and
show them to be highly accurate, efficient, and scalable.
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Here, we present a simple and highly flexible neural architec-
ture based on spiking neurons that can efficiently estimate the
surprise of its own inputs, thus generalizing from input history
in an assumption-free and parsimonious way. This feed-forward
circuit can be viewed as implementing a probabilistic model over
its inputs, where the surprise of its current input is explicitly
represented as the membrane potential of an output (readout)
neuron. The circuit is trained by adjusting the connections lead-
ing into the output neuron from a set of intermediate neurons,
which serve as detectors of random features of the circuit’s input.
Unlike many models of neuronal networks, this model relies on
local learning in a shallow network, and yet, it provides supe-
rior performance to state-of-the-art algorithms in estimating the
probability of individual activity patterns for large real neural
populations. Furthermore, the synaptic connections in the model
are learnable with a rule that is biologically plausible and resolves
the credit assignment problem (34), suggesting a possible general
principle of probabilistic learning in the nervous system.

Results
We consider the joint activity of large groups of neurons
recorded from the visual and prefrontal cortices of macaques.
Fig. 1A shows examples of activity patterns of 169 neurons,
discretized into 20-ms time windows, from the prefrontal cor-
tex of an awake behaving monkey at different times during a
classification task. Notably, individual activity patterns would
typically not repeat in the course of the experiment or even in

A

B C

Fig. 1. A randomly connected neural network, equivalent to an RP model,
that learns to generalize from observed inputs to compute the surprise of
novel inputs. (A) Examples of six neural population activity patterns at dif-
ferent time points, recorded from 169 neurons in the monkey prefrontal
cortex while performing a visual classification task (plotted locations were
chosen at random and do not correspond to actual spatial locations). (B)
Architecture of a random feed-forward neural circuit based on spiking
neurons that can learn to respond with the surprise of its input patterns,
x1 . . . xn. The input neurons are connected to an intermediate layer of neu-
rons, hi , with randomly selected synaptic weights aij , which then project to
an output neuron with synaptic weights λi . After learning λi , the membrane
potential of the output neuron y(~x) will compute − log p̂(x1 . . . xn)− log Z,
an unnormalized estimate of the surprise, − log p(x1 . . . xn), of the joint
input. Note that the same layer of randomly projecting hidden neurons can
be reused to simultaneously compute multiple probabilistic models for dif-
ferent output neurons (light color) (SI Appendix, Fig. S9A). (C) The circuit
in B is equivalent to a probabilistic model over randomly weighted cliques
of neurons, learned by reweighing their contributions, or the maximum
entropy model based on random nonlinear statistics of the input.

the lifetime of an organism—even if we observed the neural
activity for a hundred years, we would encounter at most ∼ 237

patterns out of a possible 2169. Therefore, a neural circuit receiv-
ing these patterns as inputs cannot rely on counting them and
must learn their statistical structure or otherwise fit a model in
order to generalize to new, previously unseen, patterns. A neural
circuit that estimates the surprise associated with observing a pat-
tern would assess how the new pattern conforms with previously
observed patterns, thus generalizing from past inputs without
making additional assumptions. In mathematical terms, struc-
ture in the input patterns implies that some patterns are more
likely to appear than others. This can be described in terms of
a probability distribution over input patterns p(~x ), where ~x is a
binary pattern representing the firing (one) or silence (zero) of
each neuron in the population in a given time bin. The generic
notion of surprise of observing an input pattern ~x =101100 . . .
appearing with probability p(~x ) is then given by − log p(~x ) (35).

Fig. 1B illustrates the architecture of a simple and shallow cir-
cuit, which can learn to respond to input patterns by computing
their surprise. Each of these neurons computes a weighted sum
of its inputs and responds with a spike (“1”) if the sum crosses the
cell’s threshold. These binary neurons are approximations of real
neurons, where synaptic inputs induce a change to the membrane
potential that triggers a spike when it crosses a threshold. In the
circuit, the input neurons {xj} are randomly connected to the
neurons in an intermediate layer {hi}, with randomly selected
weights {ai,j} and so each of the hi ’s computes a nonlinear ran-
dom projection (RP) of the input given by hi = g(

∑
j ai,j xj − θi)

where g() is a threshold function and θi is the neuron’s thresh-
old, which we set to a fixed value for all neurons (SI Appendix).
These intermediate-layer neurons, each serving the role of a fea-
ture detector in the input layer, are then connected to a readout
neuron, y , with weights λi . The specific values of λi thus deter-
mine the function that the readout neuron computes based on
the projections. The sum of inputs to the readout neuron, or its
“membrane potential,” is then given by

y(~x )=
∑
i

λi · g

(
n∑

j=1

ai,j xj − θi

)
. [1]

This membrane potential can also be interpreted as y(~x )=
− log p̂(~x )− logZ , where p̂(x ) corresponds to an internal model
of the inputs:

p̂(~x )=
1

Z
exp

[
−
∑
i

λi · g

(
n∑

j=1

ai,j xj − θi

)]
, [2]

and Z is a normalization factor (or partition function). The
membrane potential y(~x ) thus reflects an unnormalized model
of the input distribution or the surprise of the joint inputs,
− log p̂(x1, x2, . . . , xn), up to an additive factor. This factor can
be compensated for by learning a bias to the readout neuron’s
voltage or its spiking threshold that would give a normalized
value of the surprise (SI Appendix has a discussion of possible
normalization mechanisms and implementations). We are thus
seeking the λi ’s for which the distribution of inputs p(~x ) and
the internal model p̂(~x ) are as similar as possible. Since these
are probability distributions, the distance between them is nat-
urally captured by their relative entropy or Kullback–Leibler
divergence and can be minimized by finding the λi ’s that would
maximize the likelihood assigned to inputs by the readout neu-
ron based on its history of input statistics. We recall that Eq. 2
is the well-known Boltzmann distribution (36), offering an alter-
native interpretation of the function that this circuit computes:
given a set of K random functions of the input, i.e., the hi ’s, find
the minimal model that is consistent with the expected values
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of these functions. This is then the most unstructured descrip-
tion of the data or the maximum entropy distribution based on
the chosen RPs (37). Yet another interpretation is that this is
a mixture model, reweighting of activity of random cliques or
assemblies of neurons (38). Whichever interpretation one may
like, the result is a circuit whose synaptic weights λi correspond
to the model parameters, and such models can be trained from a
set of examples using standard numerical gradient descent-based
approaches (39).

The randomly connected neural circuit we described for esti-
mating the surprise is therefore a mechanistic implementation
of the probabilistic model based on RPs illustrated in Fig. 1C
and Eq. 2. Importantly, since the output neuron responds with a
single bit, we propose that the surprise is reflected by its mem-
brane voltage or internal state; the spiking output of the neuron
would thus reflect whether its surprise has crossed a threshold.
Critically, training this RP model requires only changing the
synaptic weights λi to the output neuron, using a process that
requires no extra information about the projections other than
that they are sufficiently informative about the input patterns.
Thus, the connectivity ai,j could be predetermined (evolved) or
learned by a separate process (feature selection). This simple
design, where the process of selecting the features is distinct
from the process of learning how to combine them, results
in a convex optimization problem in which updating synaptic
weights to the output neuron does not depend on updating of the
rest of the circuit—sidestepping the credit assignment problem.
Importantly, although the connectivity ai,j could be optimized or
learned by a separate process (more below), purely random con-
nectivity already results in a powerful and flexible probabilistic
representation.

The RP model gives an excellent description of the joint activ-
ity patterns of large groups of cortical neurons and generalizes
from training samples to estimate the likelihood of test data:
Fig. 2A shows a short segment of spiking patterns of the jointly
recorded population activity of 178 neurons from the macaque

monkey visual cortex (V1/V2) under anesthesia while moving
gratings were presented in the neurons’ receptive fields and a
segment of 169 neurons from the prefrontal cortex while the
monkey performed a visual discrimination task. We first eval-
uated the models on smaller groups of neurons (70 cells from
the visual cortex and 50 cells from the prefrontal cortex), where
we can directly test the validity of the model because individual
activity patterns still repeat. We found that models using 2,000
RPs (fit on training data) were highly accurate in predicting the
frequency of individual population activity patterns in test data.
These populations were strongly correlated as a group, which is
reflected by the failure of an independent model that ignores
correlations (Fig. 2 A, Left): many of its predicted frequencies
were outside the 99% CI for pattern frequencies (gray funnel),
with errors commonly being one or two orders of magnitude. In
contrast, maximum entropy models that use pairwise constraints
(17, 18, 40) were considerably better (Fig. 2 A, Center), and
RP models were superior with a smaller number of parameters
(compared with the pairwise models). For the entire popula-
tions of 178 and 169 neurons, where individual activity patterns
were so rare that they did not repeat during the experiment,
we evaluated how closely models predict summary statistics of
the experimental data. RP models were highly accurate in pre-
dicting synchrony (23) in the experimental data (Fig. 2B and SI
Appendix, Fig. S4C) and high-order correlations (SI Appendix,
Fig. S1), which the RP models were not built explicitly to capture.

Randomly connected circuits have been successfully used in
computational models of neural function, such as classification
(11, 41, 42), associative memory (43), and novelty detection (31).
More broadly, random projections have been effective for sig-
nal reconstruction (44–46). Here, in addition to superior perfor-
mance, random connectivity also allows for greater flexibility of
the probabilistic model: since the projections in the model are
independent samples of the same class of functions, we can simply
add projections (corresponding to adding intermediate hi neu-
rons in a randomly connected circuit) to improve the accuracy
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Fig. 2. RP models accurately predict the probability of population activity patterns. (A) Accuracy of different population models in capturing the frequencies
of individual population activity patterns in test data from 70 neurons in the monkey visual cortex (Upper) or 50 neurons from the monkey prefrontal cortex
(Lower): we compare likelihood ratio of models and test data for an independent model (Left), pairwise maximum entropy model (Center), and RP model
(Right). Gray funnels denote 99% CIs of the likelihood ratio resulting from sampling fluctuations. (B) Probability of observing the simultaneous activation
of K neurons (population synchrony) in a population of 178 neurons from the primate visual cortex (Upper) and 169 neurons from the primate prefrontal
cortex (Lower) in test data and model predictions.
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of the model. This allows using as many or as few projections
as required, in contrast to pairwise and higher-order correlation-
based models that are difficult to scale to very large populations
(22, 47). Indeed, the RP models improve monotonically with
the number of projections and become on par with or better
than state-of-the-art models, but with fewer parameters (23), as
reflected by both the likelihood of test data of large popula-
tions (Fig. 3A and SI Appendix, Fig. S2A) and direct comparisons
in small networks (SI Appendix, Fig. S2C). In our experimental
data, we found that capturing activity patterns from the pre-
frontal cortex generally required fewer RPs than patterns from
the visual cortex (SI Appendix, Fig. S5A). Since each RP corre-
sponds to a parameter in the probabilistic model, it is important
to select fewer projections than training data or risk overfitting (SI
Appendix, Fig. S2A).

The performance of the RP models has very little variance for
different randomly chosen sets of projections (SI Appendix, Fig.
S2D), reflecting that the exact sets of RPs used in each model
are unimportant and can be replaced. Different choices of gen-
erating the RPs ai,j had little effect on the model performance
(SI Appendix, Fig. S3A), and RP models using other classes of
random functions we tested were inferior to those using Eq. 1
(SI Appendix, Fig. S3B). When applied to noise-corrupted activ-
ity patterns, the surprise predicted by RP models increased in
proportion to the magnitude of the noise (SI Appendix, Fig. S6).

We found that for populations of different sizes, RP models
were most accurate when the projections were sparse in terms
of the number of ai,j weights that were not zero, corresponding
to neural circuits with a low average “indegree” of their inter-
mediate layer. Thus, sparseness, which has been suggested as
a design principle for neural computation (42, 48), emerges in
the RP models as their optimal operational regime. The optimal
average indegree value ranged between ∼ 4 for the prefrontal
cortex to ∼ 7 for the visual cortex and was surprisingly inde-
pendent of the number of neurons in the population (Fig. 3B).
Interestingly, these results are consistent with theoretical predic-
tions and anatomical observations in the rat cerebellum (41) and
the fly mushroom body (49).

A particularly important quality of the RP models, which is of
key biological relevance, is their accuracy in learning the proba-
bilities of input patterns from a severely undersampled training
data. This would affect how quickly a neural circuit could learn
from examples an accurate representation of its inputs. Fig. 3C

shows large differences in the performance of pairwise maximum
entropy and RP models (SI Appendix, Fig. S2E), when the sam-
ple size is of only a few hundred samples. Pairwise-based models
(and even more so triplet-based models, etc.) fail for small train-
ing sets because estimating pairwise correlations with limited
samples is extremely noisy when the input neurons are mostly
silent. In contrast, the linear summation in the random functions
of the RP models means that they are estimated much more reli-
ably with a small number of samples (SI Appendix, Fig. S3B). As
a result, even when the neural code can be captured equally well
by the RP and pairwise models, the RP model often requires
fewer samples to obtain the same performance (Fig. 3C and SI
Appendix, Fig. S2B).

The RP models we presented thus far were trained using stan-
dard numerical algorithms based on incremental updates (39),
which are nonbiological in terms of the available training data
and the computations performed during learning. As we demon-
strate below, we can find learning rules for RP models that are
simple, biologically plausible, and local. While other biologically
inspired learning rules may exist, the one we present here is par-
ticularly interesting since noise in the neural circuit is the key
feature of its function. Our local learning rule relies on com-
parison of the activity induced in the circuit by its input ~x with
the activity induced by a noisy version of the input. This “echo”
pattern, ~xecho, would result from weak and independent noise
that may affect each of the input neurons {xi}, such that ~x and
~xecho would differ by 1 to 2 bits on average (SI Appendix has
details). Both ~x and ~xecho are each propagated by the circuit’s
feed-forward connectivity and may result in different activation
of the intermediate neurons. If an intermediate neuron is acti-
vated only in response to the input but not by the noisy echo,
its synapse to the output neuron is strengthened (Fig. 4A); when
the converse is true, the synapse is weakened. The updates are
scaled by the ratio of the output neuron’s membrane potential
y in response to the input and its noisy echo. This is concisely
summarized in a single learning rule for each of the synapses
connecting to the output neuron:

∂λi

∂t
=exp

[
y(~x )− y(~xecho)

2

]
(hi(~x )− hi(~xecho)), [3]

and so, the change in synaptic weights depends only on the pre-
and postsynaptic activity generated by the most recent input and
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Fig. 3. Scalability, optimal sparseness, and efficiency of the RP models. (A) Expected likelihood of RP models for held-out data of individual population
activity patterns of 178 neurons in the visual cortex (SI Appendix, Fig. S2A) as a function of the number of projections used in the model (trained using
100,000 samples). Plotted values are median model performance over random choices of projections and divisions of train/test data (error bars are smaller
than the marker size) (SI Appendix, Fig. S2D shows a zoomed-in version). (B) Performance of RP models (expected likelihood normalized to a maximum value
of one) with different average indegrees (number of incoming connections) of the intermediate neurons, for the visual cortex (Upper) and for prefrontal
cortex (Lower), each trained using 100,000 input activity patterns. Different curves denote different sizes of input populations, as denoted on each curve.
(C) Expected likelihood of RP trained on population activity patterns of 100 neurons from the monkey visual cortex (SI Appendix, Fig. S2B) as a function of
the number of samples in the training data, for RP models using 1,000 RPs (RP 1K), 10,000 RPs (RP 10K), pairwise, k-pairwise, and independent models.
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A B

Fig. 4. A local biologically plausible learning rule (LR) for the RP models based on neural noise gives highly accurate models. (A) An LR that trains a circuit
to respond with the surprise of its input activity patterns by comparing the response to the input pattern (foreground) with the response to a weakly noisy
echo of the input pattern (background). Each synaptic weight is modified according to the differences in activity in the presynaptic neuron, scaled by the
relative membrane potentials of the output neuron. (B) RP model trained with the LR and standard gradient descent (GD) on population activity patterns
of 100 neurons by repeatedly presenting epochs of the same 100,000 activity patterns. Bold curves denote average over 10 realizations of learning, each
plotted in lighter color. (Top) Mean log likelihood of test data under the model (dashed orange: model trained with standard GD; dashed gray: independent
model). (Middle) Mean difference in synaptic weights between the LR and standard GD (dashed orange: average difference across multiple realizations
of standard GD). Inset shows final values of the individual synaptic weights when learned with the LR vs. standard GD. (Bottom) Example of six individual
synaptic weights as they are modified across training epochs. For clarity, the plot uses a linear scale on the x axis for the first epoch and a logarithmic scale
afterward.

its echo. This implies that the neural circuit responds with the
surprise of its input while simultaneously updating its internal
model to account for this input, which also means it can naturally
adapt to changing statistics of the input distribution.

The learning rule induces synaptic weight changes that imple-
ment a stochastic gradient descent on the RP model weights.
In contrast to classical gradient descent-based methods, which
apply the gradient of the likelihood of training data (Materials
and Methods), the rule we present here is a biological implemen-
tation of stochastic gradient descent on the minimum probability
flow (50) objective function (SI Appendix has details and deriva-
tion). In this implementation, the neural noise crucially allows
the neural circuit to compare the surprise of observed activ-
ity patterns with that of unobserved ones, where the goal is
to decrease the former and increase the latter. Although the
learning rule is an adaptation of a convex optimization method,
its form is similar to that of noise-perturbation methods for
reinforcement learning (51, 52), which also rely on compar-
ing between the circuits’ response to clean and noisy signals.
Unlike the traditional roles of noise in computational learn-
ing theory for avoiding local minima (53, 54) or finding robust
perturbation-based solutions (10), here it is the central compo-
nent that actively drives learning. While the echo mechanism
underlying the learning rule resolves the issues of locality and
credit assignment, which are the two major obstacles to biological
plausibility of learning deep neural networks, its exact implemen-
tation details are not fully addressed here (SI Appendix has some
conceptual ideas) and remain a topic for future work.

Neural circuits trained using the learning rule of Eq. 3 reached
a performance close to that of identical circuits (i.e., the same
RPs) trained with the nonbiological standard gradient descent
approach (Fig. 4 A, Top), with closely matching synaptic weights
(Fig. 4 B, Middle). Notably, training the model for a single
epoch already yielded a performance significantly higher than the
independent model. These models also accurately captured high-
order correlations (SI Appendix, Fig. S7A) and the distribution
of population synchrony (SI Appendix, Fig. S7B). When trained
with severely undersampled data, the performance of RP mod-
els trained with the learning rule was comparable with that of the
standard pairwise model (SI Appendix, Fig. S7C).

The RP model can be further improved in terms of both
its performance and biological realism by training it using Eq.
3 while periodically discarding projections with a low value of
|λi | and replacing them with new projections that were selected
either randomly (SI Appendix, Algorithm 1) or in such a way
that maximizes their predictive contribution (SI Appendix, Algo-
rithm 2). In the equivalent neural circuit, this corresponds to
pruning weak synapses to the output neuron (as reported by
ref. 55) and creating new connections to previously unused parts
of the circuit. We found that this simple pruning and replace-
ment of synapses resulted in more compact models, where the
performance increases primarily when the model has few projec-
tions (Fig. 5A and SI Appendix, Fig. S8A). The pruning, in effect,
adapts the RPs to the statistics of the input by retaining those that
are more informative in predicting the surprise. Although each
intermediate neuron still computes a random function, the set of
functions observed after training is no longer drawn from the ini-
tial distribution but is biased toward the informative features. As
a result, the intermediate units that are retained have lower fir-
ing rates and are more decorrelated from each other (Fig. 5B and
SI Appendix, Fig. S8B). Thus, when neural circuits learn to com-
pute the surprise of their inputs, pruning weak synapses would
result in a more efficient, sparse, and decorrelated activity as a
side effect.

Discussion
The RP models suggest a simple, scalable, efficient, and biolog-
ically plausible unsupervised building block for neural computa-
tion, where a key goal of neural circuits is to generalize from past
inputs to estimate the surprise of new inputs. We further pre-
sented an autonomous learning mechanism that allows randomly
connected feed-forward circuits of spiking neurons to use struc-
ture in their inputs to estimate the surprise. These neural circuits
can be interpreted as implementing probabilistic models of their
inputs that are superior to state-of-the-art probabilistic models of
neural codes, while providing greater flexibility and simple scal-
ing to large populations. Our biologically plausible learning rule
reweights the connections to an output neuron to maximize the
predictive contributions of intermediate neurons, each serving as
a random feature detector of the input activity. Relying on noise
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Fig. 5. Improved RP models using synaptic pruning and replacement. (A)
Expected log likelihood of RP models trained with the local learning rule
on population activity patterns of 70 neurons from the monkey visual cor-
tex (similar results for the prefrontal cortex are in SI Appendix, Fig. S8A)
while periodically pruning weak synapses and replacing them with new ran-
domly chosen projections. Curves denote the performance of models trained
with different total average number of replacements per synapse (low: two;
high: eight). (B) Average firing rates and (C) Pearson correlations of inter-
mediate units hi in models trained with the learning rule with (orange)
or without (purple) pruning and replacement; arrows denote median
values.

as a key component, it is a completely local process that oper-
ates continuously throughout the circuit’s normal function and
corresponds to a stochastic gradient descent implementation of
a known machine learning algorithm. Neural circuits trained this
way exhibit various properties similar to those observed in the
nervous system: they perform best when sparsely connected and
show sparse and decorrelated activity as a side effect of pruning
weak synapses.

Therefore, the RP model gives a unified solution for three key
questions, which have mostly been studied independently of one
another: 1) a network architecture that can learn to compute the
likelihood of its own inputs; 2) a statistical model that accurately
captures the spiking patterns of very large networks of neurons
in the cortex, using little training data; and 3) a shallow network
design that allows for a biologically plausible learning rule based
on noise.

The estimation of surprise that underlies the RP model also
suggests an alternative interpretation to common observations of
neural function: feature selectivity of cells would correspond to
responding strongly to a stimulus that is surprising based on the
background stimulus statistics, and neural adaptation would sig-
nify a change in surprise based on the recently observed stimuli
(56). While we focused here on shallow and randomly connected
circuits, the local scope of learning in these models also implies
they would work in other neural architectures, including deeper
networks with multiple layers or networks lacking a traditional
layered structure. In particular, we speculate that this would be
compatible with networks where the intermediate connectivity is
adjusted by a separate process such as back propagation in deep
neural networks. Importantly, relying on the existing random
connectivity as random feature detectors simplifies and acceler-
ates the learning process, and the emerging representations are

efficient and sparse (16, 25, 48) without explicitly building this
into the model.

The RP model also naturally integrates into Bayesian theories
of neural computation: because learning involves only modify-
ing the direct connections to an output neuron, multiple output
neurons that receive inputs from the same intermediate layer
can each learn a separate model over the stimuli. This could be
accomplished if each readout neuron would modify its synapses
based on some teaching signal only when particular input pat-
terns or conditions occur, thus giving a probabilistic model for
new inputs, conditioned on the particular subset of training ones.
Thus, comparing the outputs of the readout neurons would give,
for example, a Bayes-optimal classifier at the cost of a single extra
neuron per input category (SI Appendix, Fig. S9A). Dopamine,
which has already been implicated in learning mechanisms and
the prediction of outcomes (57, 58), would be one possible can-
didate for such a teaching signal that selectively switches learning
on and off based on external outcomes.

While randomly connected architectures have been used as a
general basis for learning (59), we have found that they have espe-
cially attractive properties when applied to the neural code: the
sparseness of projections, decorrelated representation by inter-
mediate neurons, the reusable set of RPs, and the robustness
of the model. The emergence of this set is both surprising and
appealing, especially because they were neither required nor
actively sought for in the design of the model. Each of these fea-
tures has been suggested as a “design principle” of the neural code
before, but here, we show their joint emanation in the responses of
cortical populations—using statistical models that capture popu-
lation response patterns and without using classical approaches
for characterizing them. The similarity in the model’s parame-
ters for visual and prefrontal cortex recordings suggests that the
RP model captures some universal properties of the structure
of the code of large neural populations. Particularly interest-
ing are the optimal values of the indegree of the projections (a
hyperparameter of the model), which generalize across datasets.

Finally, we reiterate that other, possibly more accurate, biolog-
ical implementation of the models we presented may exist. The
learning rule, noise-driven echo patterns, and pruning of pro-
jections are all specific suggestions of how the RP model may
be implemented in the brain. In particular, the exact biologi-
cal implementation of the echo patterns was not fully addressed
here. Other local learning mechanisms (e.g., ref. 12) can poten-
tially achieve the same goal, utilizing the power of shallow net-
works. A more detailed biological implementation of these mod-
els could also address the impact and potential role of recurrent
connections, which we speculate may aid in making predictions
about surprise in a dynamically changing environment.

Materials and Methods
Experimental Data. We tested our models on extracellular recordings from
neural populations of the prefrontal and early visual cortices of macaque
monkeys. All experimental procedures conformed to the National Research
Council’s Guide for the Care and Use of Laboratory Animals (60) and
were approved by the New York University Animal Welfare Committee.
For recordings from the visual cortex, we implanted 96-channel microelec-
trodes arrays (Utah arrays; Blackrock Microsystems) on the border of the
primary and secondary visual cortices (V1 and V2) of macaque monkeys
(Macaca nemestrina) such that the electrodes were distributed across the
two areas. Recording locations were chosen to yield overlapping receptive
fields with eccentricities around 5◦ or less. During the experiment, mon-
keys were anesthetized with sufentanil citrate (4 to 6 µg/kg per hour)
and paralyzed with vecuronium bromide (Norcuron; 0.1 mg/kg per hour),
while drifting sinusoidal gratings were presented monocularly on a CRT
monitor (61, 62). Recordings from the prefrontal cortex were obtained by
implantation of 96-channel Utah arrays in the prearcuate gyrus (area 8Ar)
of macaque monkeys (Macaca mulatta). During the experiments, monkeys
performed a direction discrimination task with random dots (63, 64). Neu-
ral spike waveforms were saved online (sampling rate, 30 kHz) and sorted
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offline (Plexon Inc.). Throughout the paper, we use the term “units” to refer
to both well-isolated single neurons and multiunits. Models were fitted in
each case to the population activity during all trials, regardless of their dif-
ficulty level (for the prefrontal recordings), and over all stimulus-induced
activity, regardless of the gratings direction or size (in the V1 and V2 data).

Data Preprocessing. Neural activity patterns were discretized using 20-ms
bins. Models were trained on randomly selected subsets of the recorded
data (training set), the number of samples of which is described in each
case in the text. The remaining data were used to evaluate the model
performance (held-out test set).

Construction of RPs. The coefficients ai,j in the RPs hi = g(
∑n

j=1 ai,jxj) under-
lying the RP models were randomly set, using a two-step process. First, we
used a predetermined sparseness value to decide the average number of
nonzero values (indegree) for each projection, picked them randomly and
independently with probability p = indegree

n (where n is the total number of
neurons in the input layer), and set the remaining coefficients to zero. The
values of the nonzero elements were then drawn from a Gaussian distribu-
tion ai,j ∼N(1, 1). The models were not sensitive to different variants of the
selection process of ai,j (SI Appendix, Fig. S3A).

In the results shown in the text, we used indegree values in the range
of four to seven (Fig. 3B shows the effect of different indegree values on
the model performance) and set g to be a threshold function (SI Appendix,
Fig. S3B shows other choices of random functions).

Although the threshold θi of each individual projection neuron can be
tuned separately, in the results shown in the text we used a fixed thresh-
old value of 0.1 · indegree for models trained on the prefrontal cortex and
0.05 · indegree for models trained on the visual cortex. The models were not
sensitive to changes in these values.

Training Probabilistic Models with Standard Gradient Descent. We trained the
probabilistic models by seeking the parameters λi that would minimize the
Kullback–Leibler divergence between the model p̂(~x;~λ) and the empirical
distribution pemp(~x). This is equivalent to maximizing the log likelihood of

L(~λ) =
∑
~x

pemp(~x) log p̂(~x;~λ),

which is a concave function whose gradient is given by

G(~λ) = 〈~h(~x)〉pemp −〈~h(~x)〉p̂(~x;~λ). [4]

We found the values λi that maximize the likelihood by iteratively
applying the gradient (Eq. 4) with Nesterov’s accelerated gradient descent
algorithm (65). We computed the empirical expectation in Eq. 4 (left-hand
term) by summing over the training data and the expectation over the
parameters ~λ(j) by summing over synthetic data generated from p̂(x;~λ(j))
using Metropolis–Hasting sampling.

For each of the empirical marginals 〈hi(~x)〉pemp , we used the Clopper–
Pearson method to estimate (〈hi(~x)〉p|〈hi(~x)〉pemp ): the distribution of possible
values for the real marginal given the empirical observation. We set the con-
vergence threshold of the numerical solver such that each of the marginals in
the model distribution falls within a CI of one SD under this distribution, from
its empirical marginal. After learning the parameters of the different mod-
els, we normalized them using the Wang–Landau algorithm (66) in order to
compute the likelihood of the test data given the model.

We compared the RP model with the independent model, the pair-
wise maximum entropy model, and the k-pairwise maximum entropy
model. The independent model is the maximum entropy model constrained
over the mean activities 〈xi〉, which treats neurons as independent encoders.
The pairwise maximum entropy model (17) is the probability distribution with
maximum entropy constrained over

〈xi〉 and 〈xixj〉.

The k-pairwise model (23) uses the same constraints as the pairwise
model, adding n + 1 synchrony constraints:

〈xi〉 and 〈xixj〉 and
〈∑

i
xi = K

〉
.

We learned the parameters of the pairwise and k-pairwise models with
the same numerical solver used to learn the RP model and the parameters of
independent model by using its closed-form solution. The code used to train
the models is publicly available (67) as an open-source MATLAB toolbox:
https://orimaoz.github.io/maxent toolbox/.

Markov Chain Monte Carlo (MCMC) Sampling. Synthetic data sampled from
the probabilistic models (used in Fig. 2B and SI Appendix, Figs. S1, S4C, and
S7 A and B) were generated using Metropolis–Hastings sampling, where n
proposal bit flips were made between samples (n denoting the number of
bits in the pattern). The first 10,000 samples were discarded (“burn-in”),
and every subsequent 1,000th sample was used in order to reduce sample
autocorrelations.

Training RP Models with the Learning Rule. We trained the RP models with
the learning rule by iteratively applying the gradient in Eq. 3:

∆~λ=−η exp

[
y(~x(t) )−y(~x(t)

echo
)

2

]
(~h(~x(t))−~h(~x(t)

echo)),

where ~x(t) is the joint input to the circuit at time t, and ~h(~x(t)) are the con-
catenated responses of the intermediate neurons h1 . . . hk (in the text). We
note that h and y can be written in vector form using a matrix A consisting
of the synaptic weights ai,j :
~h(~x(t)) = g(A ·~x(t)− ~θ) and y(~x(t)) =~λT~h(~x(t)).
Training was performed over multiple epochs, with the same training

data presented on each epoch and ~x(i)
echo randomly chosen from the train-

ing data in each step. The learning rate η was set at 0.005 at the first epoch
and gradually scaled to 0.00005 in the last epoch, and it was normalized by
a running average of the gradient norm for numerical stability.

Training Models with Synaptic Pruning and Replacement. To train models with
synaptic pruning and replacement, we applied the learning rule with the
training data for 10 epochs with decreasing learning rate and then dis-
carded the five projections whose learned values λi were closest to zero.
We then replaced these discarded projections with new ones either ran-
domly (SI Appendix, Algorithm 1) or in such a way that would maximize the
mismatch between the model and the training data (SI Appendix, Algorithm
2). This process was repeated until the desired numbers of projections were
replaced. The performance of these models was not sensitive to different
numbers of epochs used or discarded projections.

RP Model. Code for training the RP model, as well as other models such as
pairwise and k-pairwise, is available in the form of a MATLAB toolbox and
can be obtained from https://orimaoz.github.io/maxent toolbox/.

The software can be download in binary form (for 64-bit Windows,
MacOS, or Linux) and directly installed as a toolbox for MATLAB. A
specific example of using the toolbox to train an RP model is at
https://orimaoz.github.io/maxent toolbox/maxent example.html#4.

Learning Rule. MATLAB code demonstrating the learning rule can be
obtained from GitHub (https://github.com/orimaoz/rp learning rule).

This code makes use of the matlab toolbox described above.

Data Availability. The datasets and a sample script that trains an RP model
on the data are available in the Kiani Lab repository (https://www.cns.nyu.
edu/kianilab/Datasets.html).
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