897 research outputs found

    Classifying multispectral data by neural networks

    Get PDF
    Several energy functions for synthesizing neural networks are tested on 2-D synthetic data and on Landsat-4 Thematic Mapper data. These new energy functions, designed specifically for minimizing misclassification error, in some cases yield significant improvements in classification accuracy over the standard least mean squares energy function. In addition to operating on networks with one output unit per class, a new energy function is tested for binary encoded outputs, which result in smaller network sizes. The Thematic Mapper data (four bands were used) is classified on a single pixel basis, to provide a starting benchmark against which further improvements will be measured. Improvements are underway to make use of both subpixel and superpixel (i.e. contextual or neighborhood) information in tile processing. For single pixel classification, the best neural network result is 78.7 percent, compared with 71.7 percent for a classical nearest neighbor classifier. The 78.7 percent result also improves on several earlier neural network results on this data

    Detection of Excercise-Induced Ischemia by Measurement of NT-proBNP

    Get PDF
    Electrocardiographic exercise testing is the most widely used non-invasive screening test for coronary artery disease (CAD); however, both positive and negative predictive values for this procedure are hampered by relatively low sensitivity and specificity, leading to significant numbers of false negative and false positive studies. We hypothesized that NT-proBNP, a Neuro hormone secreted by cardiac myocytes in the ventricular wall in response to increased wall stress, would rise as a result of exercise-induced ischemia. If this were true, the enhancement of exercise testing by analysis of this plasma biomarker may offer significant improvement in the diagnostic accuracy of this procedure

    Supersymmetry in quantum mechanics: An extended view

    Get PDF
    The concept of supersymmetry in a quantum mechanical system is extended, permitting the recognition of many more supersymmetric systems, including very familiar ones such as the free particle. Its spectrum is shown to be supersymmetric, with space-time symmetries used for the explicit construction. No fermionic or Grassmann variables need to be invoked. Our construction extends supersymmetry to continuous spectra. Most notably, while the free particle in one dimension has generally been regarded as having a doubly degenerate continuum throughout, the construction clarifies taht there is a single zero energy state at the base of the spectrum.Comment: 4 pages, 4 figure

    Size Effects in Carbon Nanotubes

    Full text link
    The inter-shell spacing of multi-walled carbon nanotubes was determined by analyzing the high resolution transmission electron microscopy images of these nanotubes. For the nanotubes that were studied, the inter-shell spacing d^002{\hat{d}_{002}} is found to range from 0.34 to 0.39 nm, increasing with decreasing tube diameter. A model based on the results from real space image analysis is used to explain the variation in inter-shell spacings obtained from reciprocal space periodicity analysis. The increase in inter-shell spacing with decreased nanotube diameter is attributed to the high curvature, resulting in an increased repulsive force, associated with the decreased diameter of the nanotube shells.Comment: 4 pages. RevTeX. 4 figure

    Exactly Solvable Models: The Road Towards a Rigorous Treatment of Phase Transitions in Finite Systems

    Full text link
    We discuss exact analytical solutions of a variety of statistical models recently obtained for finite systems by a novel powerful mathematical method, the Laplace-Fourier transform. Among them are a constrained version of the statistical multifragmentation model, the Gas of Bags Model and the Hills and Dales Model of surface partition. Thus, the Laplace-Fourier transform allows one to study the nuclear matter equation of state, the equation of state of hadronic and quark gluon matter and surface partitions on the same footing. A complete analysis of the isobaric partition singularities of these models is done for finite systems. The developed formalism allows us, for the first time, to exactly define the finite volume analogs of gaseous, liquid and mixed phases of these models from the first principles of statistical mechanics and demonstrate the pitfalls of earlier works. The found solutions may be used for building up a new theoretical apparatus to rigorously study phase transitions in finite systems. The strategic directions of future research opened by these exact results are also discussed.Comment: Contribution to the ``World Consensus Initiative III, Texas A & M University, College Station, Texas, USA, February 11-17, 2005, 21

    The three-dimensional Ising model: A paradigm of liquid-vapor coexistence in nuclear multifragmentation

    Get PDF
    Clusters in the three-dimensional Ising model rigorously obey reducibility and thermal scaling up to the critical temperature. The barriers extracted from Arrhenius plots depend on the cluster size as BAσB \propto A^{\sigma} where σ\sigma is a critical exponent relating the cluster size to the cluster surface. All the Arrhenius plots collapse into a single Fisher-like scaling function indicating liquid-vapor-like phase coexistence and the univariant equilibrium between percolating clusters and finite clusters. The compelling similarity with nuclear multifragmentation is discussed.Comment: (4 pages, 4 figures

    Two-body Pion Absorption on 3He^3He at Threshold

    Full text link
    It is shown that a satisfactory explanation of the ratio of the rates of the reactions 3He(π,nn)^3He(\pi^-,nn) and 3He(π,np)^3He(\pi^-,np) for stopped pions is obtained once the effect of the short range two-nucleon components of the axial charge operator for the nuclear system is taken into account. By employing realistic models for the nucleon-nucleon interaction in the construction of these components of the axial charge operator, the predicted ratios agree with the empirical value to within 10-20\%.Comment: 19, UHPHYDOR-94-

    ZOBOV: a parameter-free void-finding algorithm

    Full text link
    ZOBOV (ZOnes Bordering On Voidness) is an algorithm that finds density depressions in a set of points, without any free parameters, or assumptions about shape. It uses the Voronoi tessellation to estimate densities, which it uses to find both voids and subvoids. It also measures probabilities that each void or subvoid arises from Poisson fluctuations. This paper describes the ZOBOV algorithm, and the results from its application to the dark-matter particles in a region of the Millennium Simulation. Additionally, the paper points out an interesting high-density peak in the probability distribution of dark-matter particle densities.Comment: 10 pages, 8 figures, MNRAS, accepted. Added explanatory figures, and better edge-detection methods. ZOBOV code available at http://www.ifa.hawaii.edu/~neyrinck/vobo

    Path-integral analysis of fluctuation theorems for general Langevin processes

    Full text link
    We examine classical, transient fluctuation theorems within the unifying framework of Langevin dynamics. We explicitly distinguish between the effects of non-conservative forces that violate detailed balance, and non-autonomous dynamics arising from the variation of an external parameter. When both these sources of nonequilibrium behavior are present, there naturally arise two distinct fluctuation theorems.Comment: 24 pages, one figur
    corecore