7,857 research outputs found
Behaviour of three charged particles on a plane under perpendicular magnetic field
We consider the problem of three identical charged particles on a plane under
a perpendicular magnetic field and interacting through Coulomb repulsion. This
problem is treated within Taut's framework, in the limit of vanishing center of
mass vector , which corresponds to the strong magnetic
field limit, occuring for example in the Fractional Quantum Hall Effect. Using
the solutions of the biconfluent Heun equation, we compute the eigenstates and
show that there is two sets of solutions. The first one corresponds to a system
of three independent anyons which have their angular momenta fixed by the value
of the magnetic field and specified by a dimensionless parameter , the ratio of , the magnetic length, over , the Bohr
radius. This anyonic character, consistent with quantum mechanics of identical
particles in two dimensions, is induced by competing physical forces. The
second one corresponds to the case of the Landau problem when .
Finally we compare these states with the quantum Hall states and find that the
Laughlin wave functions are special cases of our solutions under certains
conditions.Comment: 15 pages, 3 figures, Accepeted in JP
Modeling the Enceladus plume--plasma interaction
We investigate the chemical interaction between Saturn's corotating plasma
and Enceladus' volcanic plumes. We evolve plasma as it passes through a
prescribed H2O plume using a physical chemistry model adapted for water-group
reactions. The flow field is assumed to be that of a plasma around an
electrically-conducting obstacle centered on Enceladus and aligned with
Saturn's magnetic field, consistent with Cassini magnetometer data. We explore
the effects on the physical chemistry due to: (1) a small population of hot
electrons; (2) a plasma flow decelerated in response to the pickup of fresh
ions; (3) the source rate of neutral H2O. The model confirms that charge
exchange dominates the local chemistry and that H3O+ dominates the water-group
composition downstream of the Enceladus plumes. We also find that the amount of
fresh pickup ions depends heavily on both the neutral source strength and on
the presence of a persistent population of hot electrons.Comment: 10 pages, 1 table, 2 figure
Non Fermi Liquid Behaviour near a spin-glass transition
In this paper we study the competition between the Kondo effect and RKKY
interactions near the zero-temperature quantum critical point of an Ising-like
metallic spin-glass. We consider the mean-field behaviour of various physical
quantities. In the `quantum- critical regime' non-analytic corrections to the
Fermi liquid behaviour are found for the specific heat and uniform static
susceptibility, while the resistivity and NMR relaxation rate have a non-Fermi
liquid dependence on temperature.Comment: 15 pages, RevTex 3.0, 1 uuencoded ps. figure at the en
Optical conductivity in the normal state fullerene superconductors
We calculate the optical conductivity, , in the normal state
fullerene superconductors by self-consistently including the impurity
scatterings, the electron-phonon and electron-electron Coulomb interactions.
The finite bandwidth of the fullerenes is explicitely considered, and the
vertex corection is included Nambu in calculating the renormalized
Green's function. is obtained by calculating the
current-current correlation function with the renormalized Green's function in
the Matsubara frequency and then performing analytic continuation to the real
frequency at finite temperature. The Drude weight in is
strongly suppressed due to the interactions and transfered to the mid-infrared
region around and above 0.06 eV which is somewhat less pronounced and much
broader compared with the expermental observation by DeGiorgi .Comment: 6 pages, 4 figures. To be published in Physical Review B, July 1
Optical Conductivity in Mott-Hubbard Systems
We study the transfer of spectral weight in the optical spectra of a strongly
correlated electron system as a function of temperature and interaction
strength. Within a dynamical mean field theory of the Hubbard model that
becomes exact in the limit of large lattice coordination, we predict an
anomalous enhancement of spectral weight as a function of temperature in the
correlated metallic state and report on experimental measurements which agree
with this prediction in . We argue that the optical conductivity
anomalies in the metal are connected to the proximity to a crossover region in
the phase diagram of the model.Comment: 12 pages and 4 figures, to appear in Phys. Rev. Lett., v 75, p 105
(1995
Black Hole Mergers and Unstable Circular Orbits
We describe recent numerical simulations of the merger of a class of equal
mass, non-spinning, eccentric binary black hole systems in general relativity.
We show that with appropriate fine-tuning of the initial conditions to a region
of parameter space we denote the threshold of immediate merger, the binary
enters a phase of close interaction in a near-circular orbit, stays there for
an amount of time proportional to logarithmic distance from the threshold in
parameter space, then either separates or merges to form a single Kerr black
hole. To gain a better understanding of this phenomena we study an analogous
problem in the evolution of equatorial geodesics about a central Kerr black
hole. A similar threshold of capture exists for appropriate classes of initial
conditions, and tuning to threshold the geodesics approach one of the unstable
circular geodesics of the Kerr spacetime. Remarkably, with a natural mapping of
the parameters of the geodesic to that of the equal mass system, the scaling
exponent describing the whirl phase of each system turns out to be quite
similar. Armed with this lone piece of evidence that an approximate
correspondence might exist between near-threshold evolution of geodesics and
generic binary mergers, we illustrate how this information can be used to
estimate the cross section and energy emitted in the ultra relativistic black
hole scattering problem. This could eventually be of use in providing estimates
for the related problem of parton collisions at the Large Hadron Collider in
extra dimension scenarios where black holes are produced.Comment: 16 pages, 12 figures; updated to coincide with journal versio
Raman scattering through a metal-insulator transition
The exact solution for nonresonant A1g and B1g Raman scattering is presented
for the simplest model that has a correlated metal-insulator transition--the
Falicov-Kimball model, by employing dynamical mean field theory. In the general
case, the A1g response includes nonresonant, resonant, and mixed contributions,
the B1g response includes nonresonant and resonant contributions (we prove the
Shastry-Shraiman relation for the nonresonant B1g response) while the B2g
response is purely resonant. Three main features are seen in the nonresonant
B1g channel: (i) the rapid appearance of low-energy spectral weight at the
expense of higher-energy weight; (b) the frequency range for this low-energy
spectral weight is much larger than the onset temperature, where the response
first appears; and (iii) the occurrence of an isosbestic point, which is a
characteristic frequency where the Raman response is independent of temperature
for low temperatures. Vertex corrections renormalize away all of these
anomalous features in the nonresonant A1g channel. The calculated results
compare favorably to the Raman response of a number of correlated systems on
the insulating side of the quantum-critical point (ranging from Kondo
insulators, to mixed-valence materials, to underdoped high-temperature
superconductors). We also show why the nonresonant B1g Raman response is
``universal'' on the insulating side of the metal-insulator transition.Comment: 12 pages, 11 figures, ReVTe
Microscopic Mechanism for Staggered Scalar Order in PrFe4P12
A microscopic model is proposed for the scalar order in PrFe4P12 where f2
crystalline electric field (CEF) singlet and triplet states interact with two
conduction bands. By combining the dynamical mean-field theory and the
continuous-time quantum Monte Carlo, we obtain an electronic order with
staggered Kondo and CEF singlets with the total conduction number being unity
per site. The ground state becomes semimetallic provided that the two
conduction bands have different occupation numbers. This model naturally
explains experimentally observed properties in the ordered phase of PrFe4P12
such as the scalar order parameter, temperature dependence of the resistivity,
field-induced staggered moment, and inelastic features in neutron scattering.
The Kondo effect plays an essential role for ordering, in strong contrast with
ordinary magnetic orders by the RKKY interaction.Comment: 4 pages, 4figure
Governance tools for board members : adapting strategy maps and balanced scorecards for directorial action
The accountability of members of the board of directors of publicly traded companies has increased over years. Corresponding to these developments, there has been an inadequate advancement of tools and frameworks to help directorial functioning. This paper provides an argument for design of the Balanced Scorecard and Strategy Maps made available to the directors as a means of influencing, monitoring, controlling and assisting managerial action. This paper examines how the Balanced Scorecard and Strategy Maps could be modified and used for this purpose. The paper suggests incorporating Balanced Scorecards in the Internal Process perspective, âinternalâ implying here not just âinternal to the firmâ, but also âinternal to the inter-organizational systemâ. We recommend that other such factors be introduced separately under a new âperspectiveâ depending upon what the board wants to emphasize without creating any unwieldy proliferation of measures. Tracking the Strategy Map over time by the board of directors is a way for the board to take responsibility for the firmâs performance. The paper makes a distinction between action variables and monitoring variables. Monitoring variables are further divided on the basis of two considerations: a) whether results have been met or not and b) whether causative factors have met the expected levels of performance or not. Based on directorial responsibilities and accountability, we take another look at how the variables could be specified more completely and accurately with directorial recommendations for executives
Transfer of Spectral Weight in Spectroscopies of Correlated Electron Systems
We study the transfer of spectral weight in the photoemission and optical
spectra of strongly correlated electron systems. Within the LISA, that becomes
exact in the limit of large lattice coordination, we consider and compare two
models of correlated electrons, the Hubbard model and the periodic Anderson
model. The results are discussed in regard of recent experiments. In the
Hubbard model, we predict an anomalous enhancement optical spectral weight as a
function of temperature in the correlated metallic state which is in
qualitative agreement with optical measurements in . We argue that
anomalies observed in the spectroscopy of the metal are connected to the
proximity to a crossover region in the phase diagram of the model. In the
insulating phase, we obtain an excellent agreement with the experimental data
and present a detailed discussion on the role of magnetic frustration by
studying the resolved single particle spectra. The results for the periodic
Anderson model are discussed in connection to recent experimental data of the
Kondo insulators and . The model can successfully explain
the different energy scales that are associated to the thermal filling of the
optical gap, which we also relate to corresponding changes in the density of
states. The temperature dependence of the optical sum rule is obtained and its
relevance for the interpretation of the experimental data discussed. Finally,
we argue that the large scattering rate measured in Kondo insulators cannot be
described by the periodic Anderson model.Comment: 19 pages + 29 figures. Submitted to PR
- âŠ