5 research outputs found

    Single-phase binary phase-shift keying, quadrature phase shift keying demodulators using an XOR gate as a phase detector

    Get PDF
    A single-phase/single-loop multiple-phase-shift-keying (m-PSK) demodulator is described. The demodulator relies on a linear range of an exclusive-OR (XOR) gate employed as a phase detector. The phase controller takes the average output from the XOR gate and performs a sub-ranging/re-scaling operation to provide an input signal to a voltage-controlled oscillator (VCO). The demodulator is truly modular which theoretically can be extended for an m-PSK signal. The proposed single-phase binary-/quadrature-PSK (BPSK/QPSK) demodulators have been implemented with low-cost discrete components. The core of the phase controller simply relies on number of stages of a full-wave rectifier and a linear amplifier built from well-known op-amp-based negative feedback circuits. The demodulator prototypes operate from a single supply of 5 V. At a carrier frequency of 100 kHz, both the BPSK and QPSK demodulators achieved the maximum symbol rate of 20 ksymbol/s respectively. At these symbol rates, the BPSK and QPSK demodulators deliver symbol-error rates less than 2×10-10 and 7×10-10

    A 1.8 V 25 Mbps CMOS single-phase, phase-locked loop-based BPSK, QPSK demodulator

    Get PDF
    A single-phase binary/quadrature phase-shift keying (BPSK/QPSK) demodulator basing on a phase-locked loop (PLL) is described. The demodulator relies on a linear characteristic a rising-edge RESET/SET flip-flop (RSFF) employed as a phase detector. The phase controller takes the average output from the RSFF and performs a sub-ranging/re-scaling operation to provide an input signal to a voltage-controlled oscillator (VCO). The demodulator is truly modular which theoretically can be extended for a multiple-PSK (m-PSK) signal. Symbol-error rate analysis has also been extensively carried out. The proposed BPSK and QPSK demodulators have been fabricated in a 0.18-mm digital complementary metal–oxide–semiconductor (CMOS) process where they operate from a single supply of 1.8 V. At a carrier frequency of 60 MHz, the BPSK and QPSK demodulators achieved maximum symbol rates of 25 and 12.5 Msymb/s while consuming 0.68 and 0.79 mW, respectively. At these maximum symbol rates, the BPSK and QPSK demodulators deliver symbol-error rates less than 7.9×10-10 and 9.8×10-10, respectively where their corresponding energy per bit figures were at 27.2 and 31.7 pJ

    A 27-MHz frequency shift keying wireless system resilient to in-band interference for wireless sensing applications

    Get PDF
    A 27-MHz wireless system with binary frequency shift keying (BFSK) modulation at 400-kHz is reported. The receiver has been designed to handle in-band interference corrupting the BFSK signal with the use of complex filters and amplitude comparison method. The BFSK modulation is carried out with a voltage-controlled oscillator before up-converting with a 27-MHz local oscillator. The bipolar junction transistors (BJT-based) power amplifier with 30% efficiency pumps 220 mW into a spiral antenna. The inductive-degenerated low-noise amplifier with a voltage of more than 30 dB amplifies an incoming signal before feeding into a mixer for complex direct down conversion. With deliberate Gaussian interference injection, the minimum ratios between the signal with interference and the interference only at the distance of 2.5, 10 and 15 m are 3.3, 8.5 and 11.5 dB, respectively at a maximum data rate of 20 kbps. Without any interference included, the system can achieve a data rate of 40 kbps at the maximum transmission distance of 15 m. Conceptually agreed with the presented bit-error-rate (BER) analysis, the BER measurements with Gaussian and single-tone/two-tone in-band interferences also confirm superiority offered by the amplitude comparison method where the signal-to-noise ratio is at 1 dB for BER=10-3 at 10 kbps (10 dB better than the phase detection counterpart)
    corecore