173 research outputs found

    Densest Subgraph in Dynamic Graph Streams

    Full text link
    In this paper, we consider the problem of approximating the densest subgraph in the dynamic graph stream model. In this model of computation, the input graph is defined by an arbitrary sequence of edge insertions and deletions and the goal is to analyze properties of the resulting graph given memory that is sub-linear in the size of the stream. We present a single-pass algorithm that returns a (1+ϵ)(1+\epsilon) approximation of the maximum density with high probability; the algorithm uses O(\epsilon^{-2} n \polylog n) space, processes each stream update in \polylog (n) time, and uses \poly(n) post-processing time where nn is the number of nodes. The space used by our algorithm matches the lower bound of Bahmani et al.~(PVLDB 2012) up to a poly-logarithmic factor for constant ϵ\epsilon. The best existing results for this problem were established recently by Bhattacharya et al.~(STOC 2015). They presented a (2+ϵ)(2+\epsilon) approximation algorithm using similar space and another algorithm that both processed each update and maintained a (4+ϵ)(4+\epsilon) approximation of the current maximum density in \polylog (n) time per-update.Comment: To appear in MFCS 201

    Capacitated Vehicle Routing with Non-Uniform Speeds

    Get PDF
    The capacitated vehicle routing problem (CVRP) involves distributing (identical) items from a depot to a set of demand locations, using a single capacitated vehicle. We study a generalization of this problem to the setting of multiple vehicles having non-uniform speeds (that we call Heterogenous CVRP), and present a constant-factor approximation algorithm. The technical heart of our result lies in achieving a constant approximation to the following TSP variant (called Heterogenous TSP). Given a metric denoting distances between vertices, a depot r containing k vehicles with possibly different speeds, the goal is to find a tour for each vehicle (starting and ending at r), so that every vertex is covered in some tour and the maximum completion time is minimized. This problem is precisely Heterogenous CVRP when vehicles are uncapacitated. The presence of non-uniform speeds introduces difficulties for employing standard tour-splitting techniques. In order to get a better understanding of this technique in our context, we appeal to ideas from the 2-approximation for scheduling in parallel machine of Lenstra et al.. This motivates the introduction of a new approximate MST construction called Level-Prim, which is related to Light Approximate Shortest-path Trees. The last component of our algorithm involves partitioning the Level-Prim tree and matching the resulting parts to vehicles. This decomposition is more subtle than usual since now we need to enforce correlation between the size of the parts and their distances to the depot

    LP-Based Approximation Algorithms for Facility Location in Buy-at-Bulk Network Design

    Full text link
    Abstract We study problems that integrate buy-at-bulk network design into the classical (connected) facility location problem. In such problems, we need to open facilities, build a routing network, and route every client demand to an open facility. Furthermore, capacities of the edges can be purchased in discrete units from K different cable types with costs that satisfy economies of scale. We extend the linear programming frame-work of Talwar [IPCO 2002] for the single-source buy-at-bulk problem to these variants and prove integrality gap upper bounds for both facility location and connected facility location buy-at-bulk problems. For the unconnected variant we prove an integrality gap bound of O(K), and for the connected version, we get an improved bound of O(1).

    Capacitated Center Problems with Two-Sided Bounds and Outliers

    Full text link
    In recent years, the capacitated center problems have attracted a lot of research interest. Given a set of vertices VV, we want to find a subset of vertices SS, called centers, such that the maximum cluster radius is minimized. Moreover, each center in SS should satisfy some capacity constraint, which could be an upper or lower bound on the number of vertices it can serve. Capacitated kk-center problems with one-sided bounds (upper or lower) have been well studied in previous work, and a constant factor approximation was obtained. We are the first to study the capacitated center problem with both capacity lower and upper bounds (with or without outliers). We assume each vertex has a uniform lower bound and a non-uniform upper bound. For the case of opening exactly kk centers, we note that a generalization of a recent LP approach can achieve constant factor approximation algorithms for our problems. Our main contribution is a simple combinatorial algorithm for the case where there is no cardinality constraint on the number of open centers. Our combinatorial algorithm is simpler and achieves better constant approximation factor compared to the LP approach

    Algorithms for Colourful Simplicial Depth and Medians in the Plane

    Full text link
    The colourful simplicial depth of a point x in the plane relative to a configuration of n points in k colour classes is exactly the number of closed simplices (triangles) with vertices from 3 different colour classes that contain x in their convex hull. We consider the problems of efficiently computing the colourful simplicial depth of a point x, and of finding a point, called a median, that maximizes colourful simplicial depth. For computing the colourful simplicial depth of x, our algorithm runs in time O(n log(n) + k n) in general, and O(kn) if the points are sorted around x. For finding the colourful median, we get a time of O(n^4). For comparison, the running times of the best known algorithm for the monochrome version of these problems are O(n log(n)) in general, improving to O(n) if the points are sorted around x for monochrome depth, and O(n^4) for finding a monochrome median.Comment: 17 pages, 8 figure

    A Comparison between the Zero Forcing Number and the Strong Metric Dimension of Graphs

    Full text link
    The \emph{zero forcing number}, Z(G)Z(G), of a graph GG is the minimum cardinality of a set SS of black vertices (whereas vertices in V(G)SV(G)-S are colored white) such that V(G)V(G) is turned black after finitely many applications of "the color-change rule": a white vertex is converted black if it is the only white neighbor of a black vertex. The \emph{strong metric dimension}, sdim(G)sdim(G), of a graph GG is the minimum among cardinalities of all strong resolving sets: WV(G)W \subseteq V(G) is a \emph{strong resolving set} of GG if for any u,vV(G)u, v \in V(G), there exists an xWx \in W such that either uu lies on an xvx-v geodesic or vv lies on an xux-u geodesic. In this paper, we prove that Z(G)sdim(G)+3r(G)Z(G) \le sdim(G)+3r(G) for a connected graph GG, where r(G)r(G) is the cycle rank of GG. Further, we prove the sharp bound Z(G)sdim(G)Z(G) \leq sdim(G) when GG is a tree or a unicyclic graph, and we characterize trees TT attaining Z(T)=sdim(T)Z(T)=sdim(T). It is easy to see that sdim(T+e)sdim(T)sdim(T+e)-sdim(T) can be arbitrarily large for a tree TT; we prove that sdim(T+e)sdim(T)2sdim(T+e) \ge sdim(T)-2 and show that the bound is sharp.Comment: 8 pages, 5 figure

    Balancing Minimum Spanning and Shortest Path Trees

    Full text link
    This paper give a simple linear-time algorithm that, given a weighted digraph, finds a spanning tree that simultaneously approximates a shortest-path tree and a minimum spanning tree. The algorithm provides a continuous trade-off: given the two trees and epsilon > 0, the algorithm returns a spanning tree in which the distance between any vertex and the root of the shortest-path tree is at most 1+epsilon times the shortest-path distance, and yet the total weight of the tree is at most 1+2/epsilon times the weight of a minimum spanning tree. This is the best tradeoff possible. The paper also describes a fast parallel implementation.Comment: conference version: ACM-SIAM Symposium on Discrete Algorithms (1993

    Stable marriage and roommates problems with restricted edges: complexity and approximability

    Get PDF
    In the Stable Marriage and Roommates problems, a set of agents is given, each of them having a strictly ordered preference list over some or all of the other agents. A matching is a set of disjoint pairs of mutually acceptable agents. If any two agents mutually prefer each other to their partner, then they block the matching, otherwise, the matching is said to be stable. We investigate the complexity of finding a solution satisfying additional constraints on restricted pairs of agents. Restricted pairs can be either forced or forbidden. A stable solution must contain all of the forced pairs, while it must contain none of the forbidden pairs. Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a solution exists in the presence of restricted edges. If the answer is no, one might look for a solution close to optimal. Since optimality in this context means that the matching is stable and satisfies all constraints on restricted pairs, there are two ways of relaxing the constraints by permitting a solution to: (1) be blocked by as few as possible pairs, or (2) violate as few as possible constraints n restricted pairs. Our main theorems prove that for the (bipartite) Stable Marriage problem, case (1) leads to View the MathML source-hardness and inapproximability results, whilst case (2) can be solved in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields an View the MathML source-hard but (under some cardinality assumptions) 2-approximable problem. In the case of View the MathML source-hard problems, we also discuss polynomially solvable special cases, arising from restrictions on the lengths of the preference lists, or upper bounds on the numbers of restricted pairs
    corecore