5 research outputs found

    Non-linear optical deformation potentials in uniaxially strained ZnO microwires

    Get PDF
    The emission properties of bent ZnO microwires with diameters ranging from 1.5  μm to 7.3  μm are systematically investigated by cathodoluminescence spectroscopy at T ≈ 10 K. We induced uniaxial strains along the c-axis of up to ±2.9 %. At these high strain values, we observe a nonlinear shift of the emission energy with respect to the induced strain, and the magnitude of the energy shift depends on the sign of the strain. The linear and non-linear deformation potentials were determined to be D1=−2.50±0.05 eV and D2=−15.0±0.5 eV, respectively. The nonlinearity of the energy shift is also reflected in the observed spectral broadening of the emission peak as a function of the locally induced strain, which decreases with increasing strain on the compressive side and increases on the tensile side

    Non-linear optical deformation potentials in uniaxially strained ZnO microwires

    Get PDF
    The emission properties of bent ZnO microwires with diameters ranging from 1.5  μm to 7.3  μm are systematically investigated by cathodoluminescence spectroscopy at T ≈ 10 K. We induced uniaxial strains along the c-axis of up to ±2.9 %. At these high strain values, we observe a nonlinear shift of the emission energy with respect to the induced strain, and the magnitude of the energy shift depends on the sign of the strain. The linear and non-linear deformation potentials were determined to be D1=−2.50±0.05 eV and D2=−15.0±0.5 eV, respectively. The nonlinearity of the energy shift is also reflected in the observed spectral broadening of the emission peak as a function of the locally induced strain, which decreases with increasing strain on the compressive side and increases on the tensile side

    Non-linear optical deformation potentials in uniaxially strained ZnO microwires

    No full text
    The emission properties of bent ZnO microwires with diameters ranging from 1.5  μm to 7.3  μm are systematically investigated by cathodoluminescence spectroscopy at T ≈ 10 K. We induced uniaxial strains along the c-axis of up to ±2.9 %. At these high strain values, we observe a nonlinear shift of the emission energy with respect to the induced strain, and the magnitude of the energy shift depends on the sign of the strain. The linear and non-linear deformation potentials were determined to be D1=−2.50±0.05 eV and D2=−15.0±0.5 eV, respectively. The nonlinearity of the energy shift is also reflected in the observed spectral broadening of the emission peak as a function of the locally induced strain, which decreases with increasing strain on the compressive side and increases on the tensile side

    High-order harmonic generation traces ultrafast coherent phonon dynamics in ZnO

    Get PDF
    Ultrafast coherent phonon dynamics in ZnO is studied via high-order harmonic generation by intense mid-IR laser pulses. We show, the phonon dynamic is very different after excitation in the tunnel and multiphoton regime

    High-order harmonic generation traces ultrafast coherent phonon dynamics in ZnO

    No full text
    Ultrafast coherent phonon dynamics in ZnO is studied via high-order harmonic generation by intense mid-IR laser pulses. We show, the phonon dynamic is very different after excitation in the tunnel and multiphoton regime
    corecore