3 research outputs found

    Combining Artificial Intelligence, Ontology, and Frequency-based Approaches to Recommend Activities in Scientific Workflows

    Get PDF
    The number of activities provided by scientific workflow management systems is large, which requires scientists to know many of them to take advantage of the reusability of these systems. To minimize this problem, the literature presents some techniques to recommend activities during the scientific workflow construction. In this paper we specified and developed a hybrid activity recommendation system considering information on frequency, input and outputs of activities and ontological annotations. Additionally, this paper presents a modeling of activities recommendation as a classification problem, tested using 5 classifiers; 5 regressors; and a composite approach which uses a Support Vector Machine (SVM) classifier, combining the results of other classifiers and regressors to recommend; and Rotation Forest, an ensemble of classifiers. The proposed technique was compared to related techniques and to classifiers and regressors, using 10-fold-cross-validation, achieving a Mean Reciprocal Rank (MRR) at least 70% greater than those obtained by classical techniques

    Development of a strategy to scientific workflow activities recommendation: An ontology-based approach

    No full text
    O número de atividades disponibilizadas pelos sistemas gerenciadores de workflows científicos é grande, o que exige dos cientistas conhecerem muitas delas para aproveitar a capacidade de reutilização desses sistemas. Para minimizar este problema, a literatura apresenta algumas técnicas para recomendar atividades durante a construção de workflows científicos. Este projeto especificou e desenvolveu um sistema de recomendação de atividades híbrido, considerando informação sobre frequência, entrada e saídas das atividades, e anotações ontológicas para recomendar. Além disso, neste projeto é apresentada uma modelagem da recomendação de atividades como um problema de classificação e regressão, usando para isso cinco classificadores; cinco regressores; um classificador SVM composto, o qual usa o resultado dos outros classificadores e regressores para recomendar; e um ensemble de classificadores Rotation Forest. A técnica proposta foi comparada com as outras técnicas da literatura e com os classificadores e regressores, por meio da validação cruzada em 10 subconjuntos, apresentando como resultado uma recomendação mais precisa, com medida MRR ao menos 70% maior do que as obtidas pelas outras técnicasThe number of activities provided by scientific workflow management systems is large, which requires scientists to know many of them to take advantage of the reusability of these systems. To minimize this problem, the literature presents some techniques to recommend activities during the scientific workflow construction. This project specified and developed a hybrid activity recommendation system considering information on frequency, input and outputs of activities and ontological annotations. Additionally, this project presents a modeling of activities recommendation as a classification problem, tested using 5 classifiers; 5 regressors; a SVM classifier, which uses the results of other classifiers and regressors to recommend; and Rotation Forest , an ensemble of classifiers. The proposed technique was compared to other related techniques and to classifiers and regressors, using 10-fold-cross-validation, achieving a MRR at least 70% greater than those obtained by other technique

    Combining Artificial Intelligence, Ontology, and Frequency-based Approaches to Recommend Activities in Scientific Workflows

    No full text
    The number of activities provided by scientific workflow management systems is large, which requires scientists to know many of them to take advantage of the reusability of these systems. To minimize this problem, the literature presents some techniques to recommend activities during the scientific workflow construction. In this paper we specified and developed a hybrid activity recommendation system considering information on frequency, input and outputs of activities and ontological annotations. Additionally, this paper presents a modeling of activities recommendation as a classification problem, tested using 5 classifiers; 5 regressors; and a composite approach which uses a Support Vector Machine (SVM) classifier, combining the results of other classifiers and regressors to recommend; and Rotation Forest, an ensemble of classifiers. The proposed technique was compared to related techniques and to classifiers and regressors, using 10-fold-cross-validation, achieving a Mean Reciprocal Rank (MRR) at least 70% greater than those obtained by classical techniques
    corecore