3 research outputs found

    Robust Flux and Speed State Observer Design for Sensorless Control of a Double Star Induction Motor

    Get PDF
    In this paper, a robust flux and speed observer for sensorless control of a double star induction motor is presented. Proper operation of vector control of the double star induction motor requires reliable information from the process to be controlled. This information can come from mechanical sensors (rotational speed, angular position). Furthermore, mechanical flux and speed sensors are generally expensive and fragile and affect the reliability of the system. However, the control without sensors must-have performance that does not deviate too much from that which we would have had with a mechanical sensor. In this framework, this work mainly deals with the estimation of the flux and speed using a robust state observer in view of sensorless vector control of the double star induction motor. The evaluation criteria are the static and dynamic performances of the system as well as the errors between the reference values and those estimated. Extensive simulation results and robustness tests are presented to evaluate the performance of the proposed sensorless control scheme. Furthermore, under the same test conditions, a detailed comparison between the proposed state observer and the sliding mode-MRAS technique is carried out where the results of its evaluation are investigated in terms of their speed and flux tracking capability during load and speed transients and also with parameter variation. It is worth mentioning that the proposed state observer can obtain both high current quality and low torque ripples, which show better performance than that in the MRAS system

    Current predictive controller for high frequency resonant inverter in induction heating

    Get PDF
    In the context of this article, we are particularly interested in the modeling and control of an induction heating system powered by high frequency resonance inverter. The proposed control scheme comprises a current loop and a PLL circuit. This latter is an electronic assembly for slaving the instantaneous phase of output on the instantaneous input phase, and is used to follow the rapid variations of the frequency.To further improve the transient dynamics of the studied system and in order to reduce the impact of measurement noise on the control signal, a generalized predictive control has been proposed to control the current of the inductor. We discussed the main steps of this command, whose it uses a minimization algorithm to obtain an optimal control signals, its advantages are: its design is simple, less complexity and direct manipulation of the control signal.The results have shown the effectiveness of the proposed method, especially in the parameters variation and/or the change of the reference current
    corecore