74 research outputs found
Infestation of parasitic rhizocephalan barnacles <i>Sacculina beauforti</i> (Cirripedia, Rhizocephala) in edible mud crab, <i>Scylla olivacea</i>
Screening of mud crab genus Scylla was conducted in four locations (Marudu Bay, Lundu, Taiping, Setiu) representing Malaysia. Scylla olivacea with abnormal primary and secondary sexual characters were prevalent (approximately 42.27% of the local screened S. olivacea population) in Marudu Bay, Sabah. A total of six different types of abnormalities were described. Crabs with type 1 and type 3 were immature males, type 2 and type 4 were mature males, type 5 were immature females and type 6 were mature females. The abdomen of all crabs with abnormalities were dented on both sides along the abdomen’s middle line. Abnormal crabs showed significant variation in their size, weight, abdomen width and/or gonopod or pleopod length compared to normal individuals. The mean body weight of abnormal crabs (type 1–5) were higher than normal crabs with smaller body size, while females with type 6 abnormality were always heavier than the normal counterparts at any given size. Sacculinid’s externa were observed in the abdomen of crabs with type 4 and type 6 abnormalities. The presence of embryos within the externa and subsequent molecular analysis of partial mitochondrial COI region confirmed the rhizocephalan parasite as Sacculina beauforti. Future in-depth descriptions of the life cycle and characteristics of S. beauforti are recommended as it involves a commercially important edible crab species and the effect on human health from the consumption of crabs is of crucial concern
High-Density Genetic Linkage Maps Provide Novel Insights Into ZW/ZZ Sex Determination System and Growth Performance in Mud Crab (Scylla paramamosain)
Mud crab, Scylla paramamosain is one of the most important crustacean species in global aquaculture. To determine the genetic basis of sex and growth-related traits in S. paramamosain, a high-density genetic linkage map with 16,701 single nucleotide polymorphisms (SNPs) was constructed using SLAF-seq and a full-sib family. The consensus map has 49 linkage groups, spanning 5,996.66 cM with an average marker-interval of 0.81 cM. A total of 516 SNP markers, including 8 female-specific SNPs segregated in two quantitative trait loci (QTLs) for phenotypic sex were located on LG32. The presence of female-specific SNP markers only on female linkage map, their segregation patterns and lower female: male recombination rate strongly suggest the conformation of a ZW/ZZ sex determination system in S. paramamosain. The QTLs of most (90%) growth-related traits were found within a small interval (25.18–33.74 cM) on LG46, highlighting the potential involvement of LG46 in growth. Four markers on LG46 were significantly associated with 10–16 growth-related traits. BW was only associated with marker 3846. Based on the annotation of transcriptome data, 11 and 2 candidate genes were identified within the QTL regions of sex and growth-related traits, respectively. The newly constructed high-density genetic linkage map with sex-specific SNPs, and the identified QTLs of sex- and growth-related traits serve as a valuable genetic resource and solid foundation for marker-assisted selection and genetic improvement of crustaceans
Zebrafish (Danio rerio) ecotoxicological ABCB4, ABCC1 and ABCG2a gene promoters depict spatiotemporal xenobiotic multidrug resistance properties against environmental pollutants
Marine organisms are naturally equipped with multixenobiotic resistance mechanisms that are often governed by ATP-binding cassette (ABC) transporter family members. Previous studies focused on the target genes of ABC but little is known about the functionality of their promoter regions. Due to the importance of promoters in ABC transporter gene regulation, we functionally characterized three major xenobiotic transporter promoters of zebrafish, namely ABCB4, ABCC1 and ABCG2a via in silico transcription factor binding analysis and in vivo spatiotemporal expression analysis. The former revealed the major functional contributors (such as AP-1, C/EBP beta, HNF-1 and NF-1 TFBSs) towards promoter activity enhancement across four different tissues (liver, muscle, cell cycle and immune cells) where majority of them discovered were liver-specific whereas the latter unearthed the localization of these promoters at liver and intestinal tracts during late embryogenesis (48, 72 and 96 hpf). This study contributes towards future xenobiotic transporter ecotoxicology studies in zebrafi
miR-24 is involved in vertebrate LC-PUFA biosynthesis as demonstrated in marine teleost Siganus canaliculatus
Recently, microRNAs (miRNAs) have emerged as crucial regulators of lipid metabolism. However, the miRNA-mediated regulatory mechanism on long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) biosynthesis in vertebrates remains largely unknown. Here, we address a potentially important role of miRNA-24 (miR-24) in the regulation of LC-PUFA biosynthesis in rabbitfish Siganus canaliculatus. miR-24 showed significantly higher abundance in liver of rabbitfish reared in brackish water than in seawater for fish fed vegetable oil diets and in S. canaliculatus hepatocyte line (SCHL) cells incubated with alpha-linolenic acid (ALA) than the control group. Similar expression patterns were also observed on the expression of sterol regulatory element-binding protein-1 (srebp1) and LC-PUFA biosynthesis related genes. While opposite results were observed on the expression of insulin-induced gene 1 (insig1), an endoplasmic reticulum membrane protein blocking Srebp1 proteolytic activation. Luciferase reporter assays revealed rabbitfish insig1 as a target of miR-24. Knockdown of miR-24 in SCHL cells resulted in increased Insig1 protein, and subsequently reduced mature Srebp1 protein and expression of genes required for LC-PUFA biosynthesis, and these effects could be attenuated after additional insig1 knockdown. Opposite results were observed with overexpression of miR-24. Moreover, increasing endogenous insig1 by knockdown of miR-24 inhibited Srebp1 processing and consequently suppressed LC-PUFA biosynthesis in rabbitfish hepatocytes. These results indicate a potentially critical role for miR-24 in regulating LC-PUFA biosynthesis through the Insig1/Srebp1 pathway by targeting insig1. This is the first report of miR-24 involved in LC-PUFA biosynthesis and thus may provide knowledge on the regulatory mechanisms of LC-PUFA biosynthesis in vertebrates
Before it is too late: current genetic diversity status of the exploited sandfish holothuria scabra (Echinodermata: Holothuroidea)
The sandfish Holothuria scabra is a well exploited and among the highest-valued sea cucumber species. Owing to its economic importance and the global expansion of sea cucumber fisheries that could lead to overfishing, the aquaculture of H. scabra is increasing rapidly. To aid in resource management and providing sufficient molecular information to inform the selection of sea cucumber broodstock to be incorporated into aquaculture, sufficient knowledge on their genetic diversity is among the pre-requisite. Therefore, this review synthesized together the currently available information on genetic diversity of H. scabra in a global scale, thereby highlighting the lack of genetic baseline of H. scabra in some populations. The implications and importance of the availability of genetic baseline data to restocking and sea ranching, fisheries, and aquaculture of H. scabra are discussed. Finally, future directions, including the development of full genome, the use of other sequencing technologies, and the impact of climate change onto H. scabra are provided
Study on the implementation of different biofloc sedimentable solids in improving the water quality and survival rate of mud crab, Scylla paramamosain larvae culture
Microbial communities in biofloc technology (BFT) are responsible in minimalize water exchange and producing microbial proteins that are beneficial as a supplementals diet for mud crab, Scylla paramamosain larvae culture. Therefore, a study was conducted to determine the effect of bacterial communities in different sedimentable solids in order to improve the water quality and survival rate of S. paramamosain larvae culture. The results successfully identified that the number of pathogenic bacteria, Vibrio spp. decreased when the heterotrophic bacteria thrived in treatment tank with 4 ml/L sedimentable solids. The group of heterotrophic bacteria were able to adapt in developing their population while effectively uptake the ammonium and nitrite components. The ammonium and nitrite level in treatment tank depleting at an early stage of the experiment, and constantly low until the end of experiments (ammonium <0.20 mg/L, nitrite <0.10 mg/L). The survival rates of S. paramamosain larvae in both control and treatment tanks were identified <2.0%, however, sedimentable solids of 2 ml/L was identified suitable to be applied in crab larvae culture as it can help to reach megalopa stages within 17 days of culture period. Overall, it can be concluded that bacteria communities in biofloc are able to regulate nutrients load and maintaining water quality and also help in increased survival rate and development performance in the low sedimentable solids of biofloc culture treatment. Therefore, sedimentable solids of 2 ml/L is suggested to be potentially applied in S. paramamosain larvae cultures from this research finding
Low water pH depressed growth and early development of giant freshwater prawn Macrobrachium rosenbergii larvae
Macrobrachium rosenbergii is one of the shellfish species with high aquaculture value due to its increasing market demand. However, the comparatively low production volume compared to demand coupled with the rapid decline of the natural environment, consequently, drives the potential depletion of the wild population. The decrease in water pH related to anthropogenic pollution is one of the most critical factors affecting the early life performances of M. rosenbergii. Therefore, this study was designed to examine the effect of low water pH on feeding, growth and development of M. rosenbergii early life stages. Experimental water pH was set as neutral (7.7 ± 0.4); mild-acidic (6.4 ± 0.5) and acidic (5.4 ± 0.2) with triplication at a stocking density of 2 larvae/L for 30 days. As expected, M. rosenbergii larvae were highly sensitive to acidic pH with no larvae survived beyond 48 h of exposure. Feeding, survival and growth of larvae were adversely affected by mild-acidic pH exposure as compared to neutral pH. Larvae exposed to mild-acidic water pH experienced a prolonged larval period and only metamorphosed to the post-larval stage at day-30. Whilst under neutral water pH, larval that metamorphosed to post-larval was first observed on day-23. The negative impact of decreased pH, even in mild-acidic pH exposure, on the feeding, survival, growth and development of M. rosenbergii larvae highlights the urgency of periodic pH monitoring during M. rosenbergii larviculture
Identification of Sex-Related Genes from the Three-Spot Swimming Crab <i>Portunus sanguinolentus</i> and Comparative Analysis with the Crucifix Crab <i>Charybdis feriatus</i>
Crabs within the family Portunidae are important marine species in both aquaculture and fishery sectors. The current aquaculture status of most portunids, however, still relies on wild-caught fisheries due to the lack of essential knowledge regarding their reproductive biology and underlying governing mechanism. With the advancement of sequencing technology, transcriptome sequencing has been progressively used to understand various physiological processes, especially on non-model organisms. In the present study, we compared the differentially expressed genes (DEGs) between sexes of Portunus sanguinolentus based on their gonadal transcriptome profiles and subsequently contrasted them with the gonadal DEGs of Charybdis feriatus, the other member of Family Portunidae. In total, 40,964 DEGs between ovaries and testes were uncovered, with 27,578 up- and 13,386 down-regulated in females. Among those, some sex-related DEGs were identified, including a dmrt-like (DMRT) gene which was specifically expressed in males. C. feriatus has approximately 63.5% of genes common with P. sanguinolentus, with 62.6% showing similar expression patterns. Interestingly, the DMRT gene was specifically expressed in male P. sanguinolentus while its homologous gene—doublesex (DSX)—was specifically expressed in male C. feriatus. The DEGs obtained from the gonadal transcriptome of P. sanguinolentus are a beneficial resource for future genetic and genomic research in P. sanguinolentus and its close species. The transcriptomic comparison analysis might provide references for better understanding the sex determination and differentiation mechanisms among portunids
- …