8 research outputs found

    Hangar environment monitoring for corrosion risk assessment and aeronautical heritage protection

    No full text
    The paper shows how the aeronautical heritage is affected by airborne pollutants and the air temperaturehumidity complex. Monitoring meteorological and environmental data in a heritage site intended for protection, these effects are analyzed. The starting point is thus the acquisition of the meteorological and environmental data from the intended hangar with stored historical aircrafts taken part in fights of the second world war. The following step is an evaluation of the penetration of moisture into the hangar environment from outside. This moisture penetration is deducted from wet/dry cycles obtained from air humidity and temperature fluctuations in the hangar environment. In addition, an evolution of the aircraft surface temperature is pertinent to potential moisturizing the aircraft surface. As a measure of moisture penetration, a time of wetness (ToW) is determined indoors. Furthermore, pollutants infiltrated into the hangar environment are derived from a standardized methodology. Beside the pollution infiltration, the indoor generated pollution is estimated per material from which the historic aircrafts are constituted. Because of major material in the aircraft, the deposition rate of indoor pollutants onto an aluminum alloy is determined by means of a standardized statistical model. Finally, monitoring the hangar environment, the heritage aircraft vulnerability to corrosion is estimated based on atmosphere corrosivity modeling

    Pollution and moisture infiltration effect assessment based on data-driven analysis for aircraft heritage protection

    No full text
    International audienceThe paper deals with monitoring and analyzing the indoor environmental parameters through remote data collection to evaluate the pollution and moisture infiltration effects on aircraft heritage conservation. First, based on the meteorological and pollution data, the moisture penetration and airborne pollution infiltration into indoor spaces of a heritage site (hangar) with stored historic aircrafts are determined. The hangar under investigation is located in the Aviation museum Kbely, Prague, Czech Republic. The determination is performed by wet/dry cycles (fluctuations) evaluation and applying ISO 11844 methodology to outdoor pollution infiltration into the interior. Next, a time of wetness (ToW) is determined indoors according to ISO 9223, rather as an environmental than a surface parameter as dewing and exceeding high humidity level (approxl RH 80% at T>0 °C) are considered. The actual moisture adsorption onto polluted surfaces of aircraft artifacts is then dependent on the hygroscopic corrosion products developed. Such an adsorption prolongs actual surface ToW. In addition to ToW, even the deposition rate of indoor pollutants, particularly sulphur dioxide and chlorides, are considered and the atmosphere corrosivity is estimated by applying the ISO standardized statistical models for aluminium. The resulting iso-corrosivity figures out the aggressiveness of the hangar environment from the point of view of aircraft material susceptibility to corrosion and degradation

    Pollution and moisture infiltration effect assessment based on data-driven analysis for aircraft heritage protection

    Get PDF
    International audienceThe paper deals with monitoring and analyzing the indoor environmental parameters through remote data collection to evaluate the pollution and moisture infiltration effects on aircraft heritage conservation. First, based on the meteorological and pollution data, the moisture penetration and airborne pollution infiltration into indoor spaces of a heritage site (hangar) with stored historic aircrafts are determined. The hangar under investigation is located in the Aviation museum Kbely, Prague, Czech Republic. The determination is performed by wet/dry cycles (fluctuations) evaluation and applying ISO 11844 methodology to outdoor pollution infiltration into the interior. Next, a time of wetness (ToW) is determined indoors according to ISO 9223, rather as an environmental than a surface parameter as dewing and exceeding high humidity level (approxl RH 80% at T>0 °C) are considered. The actual moisture adsorption onto polluted surfaces of aircraft artifacts is then dependent on the hygroscopic corrosion products developed. Such an adsorption prolongs actual surface ToW. In addition to ToW, even the deposition rate of indoor pollutants, particularly sulphur dioxide and chlorides, are considered and the atmosphere corrosivity is estimated by applying the ISO standardized statistical models for aluminium. The resulting iso-corrosivity figures out the aggressiveness of the hangar environment from the point of view of aircraft material susceptibility to corrosion and degradation

    Pollution and moisture infiltration effect assessment based on data-driven analysis for aircraft heritage protection

    No full text
    The paper deals with monitoring and analyzing the indoor environmental parameters through remote data collection to evaluate the pollution and moisture infiltration effects on aircraft heritage conservation. First, based on the meteorological and pollution data, the moisture penetration and airborne pollution infiltration into indoor spaces of a heritage site (hangar) with stored historic aircrafts are determined. The hangar under investigation is located in the Aviation museum Kbely, Prague, Czech Republic. The determination is performed by wet/dry cycles (fluctuations) evaluation and applying ISO 11844 methodology to outdoor pollution infiltration into the interior. Next, a time of wetness (ToW) is determined indoors according to ISO 9223, rather as an environmental than a surface parameter as dewing and exceeding high humidity level (approxl RH 80% at T>0 °C) are considered. The actual moisture adsorption onto polluted surfaces of aircraft artifacts is then dependent on the hygroscopic corrosion products developed. Such an adsorption prolongs actual surface ToW. In addition to ToW, even the deposition rate of indoor pollutants, particularly sulphur dioxide and chlorides, are considered and the atmosphere corrosivity is estimated by applying the ISO standardized statistical models for aluminium. The resulting iso-corrosivity figures out the aggressiveness of the hangar environment from the point of view of aircraft material susceptibility to corrosion and degradation

    Pollution and moisture infiltration effect assessment based on data-driven analysis for aircraft heritage protection

    No full text
    The paper deals with monitoring and analyzing the indoor environmental parameters through remote data collection to evaluate the pollution and moisture infiltration effects on aircraft heritage conservation. First, based on the meteorological and pollution data, the moisture penetration and airborne pollution infiltration into indoor spaces of a heritage site (hangar) with stored historic aircrafts are determined. The hangar under investigation is located in the Aviation museum Kbely, Prague, Czech Republic. The determination is performed by wet/dry cycles (fluctuations) evaluation and applying ISO 11844 methodology to outdoor pollution infiltration into the interior. Next, a time of wetness (ToW) is determined indoors according to ISO 9223, rather as an environmental than a surface parameter as dewing and exceeding high humidity level (approxl RH 80% at T>0 °C) are considered. The actual moisture adsorption onto polluted surfaces of aircraft artifacts is then dependent on the hygroscopic corrosion products developed. Such an adsorption prolongs actual surface ToW. In addition to ToW, even the deposition rate of indoor pollutants, particularly sulphur dioxide and chlorides, are considered and the atmosphere corrosivity is estimated by applying the ISO standardized statistical models for aluminium. The resulting iso-corrosivity figures out the aggressiveness of the hangar environment from the point of view of aircraft material susceptibility to corrosion and degradation
    corecore