10 research outputs found

    ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis

    Get PDF
    peer-reviewedCrAssphages are an extensive and ubiquitous family of tailed bacteriophages, predicted to infect bacteria of the order Bacteroidales. Despite being found in ~50% of individuals and representing up to 90% of human gut viromes, members of this viral family have never been isolated in culture and remain understudied. Here, we report the isolation of a CrAssphage (ΦCrAss001) from human faecal material. This bacteriophage infects the human gut symbiont Bacteroides intestinalis, confirming previous in silico predictions of the likely host. DNA sequencing demonstrates that the bacteriophage genome is circular, 102 kb in size, and has unusual structural traits. In addition, electron microscopy confirms that ΦcrAss001 has a podovirus-like morphology. Despite the absence of obvious lysogeny genes, ΦcrAss001 replicates in a way that does not disrupt proliferation of the host bacterium, and is able to maintain itself in continuous host culture during several weeks

    Modern view on the issues of diagnosis and verification of axillary lymph nodes involvement in early breast cancer

    Get PDF
    The involvement of axillary lymph nodes is one of the most important prognostic factors, significantly affecting the treatment strategy for early breast cancer (BC). The risk of axillary lymph node metastases depends directly on a number of factors (age of women, size of tumor, presence of lymphovascular invasion and biological characteristics of cancer). The evaluation of regional lymph node status in patients with early BC includes the clinical examination of regional zones and the ultrasound study (US), using these methods can help to study lymph nodes shape, borders, margins and structure. The sensitivity of ultrasound in the evaluation of regional lymph nodes status directly depends on the biological subtype of the tumor; the minimum level of ultrasound sensitivity in the evaluation of lymph nodes status is detected for luminal HER2-negative cancer (less than 40%), and maximum sensitivity is detected for triple negative and HER2-positive subtypes (6871%). Clinical examination and modern ultrasound are the most accessible methods for the evaluation of regional lymph nodes status, but the possibility to misjudge metastatic process can be detected in 1/4 of patients. Verification of the diagnosis in the preoperative phase (fine-needle aspiration biopsy/core-needle biopsy under ultrasound guidance) allows minimize the number of errors for the regional staging. The sentinel lymph node biopsy (SLNB) is the gold standard of regional treatment in patients with early stage BC, nowadays. The randomized trials (NSABP B-32, ACOSOG q0011) show the safety of recession of performing regional lymph node dissection in favor of SLNB not only in case of clinically negative lymph nodes, but also in patients with metastases in 2 sentinel lymph nodes, upon condition that organ-conservative treatment and subsequent radiation therapy will be used. High-quality regional staging, the choice of the therapeutic algorithm in accordance with the biological characteristics of carcinoma, the application of the most effective modern drug regimes, the optimal radiation therapy allow not only minimize the extent of surgery, but also achieve high long-term survival results, provide excellent functional results and high quality of life in patients with the involvement of axillary lymph nodes

    Isolation and characterisation of ΦcrAss002, a crAss-like phage from the human gut that infects Bacteroides xylanisolvens

    Get PDF
    peer-reviewedBackground The gut phageome comprises a complex phage community of thousands of individual strains, with a few highly abundant bacteriophages. CrAss-like phages, which infect bacteria of the order Bacteroidales, are the most abundant bacteriophage family in the human gut and make an important contribution to an individual’s core virome. Based on metagenomic data, crAss-like phages form a family, with four sub-families and ten candidate genera. To date, only three representatives isolated in pure culture have been reported: ΦcrAss001 and two closely related phages DAC15 and DAC17; all are members of the less abundant candidate genus VI. The persistence at high levels of both crAss-like phage and their Bacteroidales hosts in the human gut has not been explained mechanistically, and this phage-host relationship can only be properly studied with isolated phage-host pairs from as many genera as possible. Results Faeces from a healthy donor with high levels of crAss-like phage was used to initiate a faecal fermentation in a chemostat, with selected antibiotics chosen to inhibit rapidly growing bacteria and selectively enrich for Gram-negative Bacteroidales. This had the objective of promoting the simultaneous expansion of crAss-like phages on their native hosts. The levels of seven different crAss-like phages expanded during the fermentation, indicating that their hosts were also present in the fermenter. The enriched supernatant was then tested against individual Bacteroidales strains isolated from the same faecal sample. This resulted in the isolation of a previously uncharacterised crAss-like phage of candidate genus IV of the proposed Alphacrassvirinae sub-family, ΦcrAss002, that infects the gut commensal Bacteroides xylanisolvens. ΦcrAss002 does not form plaques or spots on lawns of sensitive cells, nor does it lyse liquid cultures, even at high titres. In keeping with the co-abundance of phage and host in the human gut, ΦcrAss002 and Bacteroides xylanisolvens can also co-exist at high levels when co-cultured in laboratory media. Conclusions We report the isolation and characterisation of ΦcrAss002, the first representative of the proposed Alphacrassvirinae sub-family of crAss-like phages. ΦcrAss002 cannot form plaques or spots on bacterial lawns but can co-exist with its host, Bacteroides xylanisolvens, at very high levels in liquid culture without impacting on bacterial numbers. Video abstrac

    Amination of 5-Spiro-Substituted 3-Hydroxy-1,5-dihydro-2<i>H</i>-pyrrol-2-ones

    No full text
    The 3-hydroxy-1,5-dihydro-2H-pyrrol-2-one motif is a valuable scaffold in drug discovery. The replacement of the 3-oxy fragment in 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones-based compounds with a 3-amino one (3-amino analogs of 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones, 3-amino-1,5-dihydro-2H-pyrrol-2-ones) can play a crucial role in their biological effect. Thus, approaches to 3-amino-1,5-dihydro-2H-pyrrol-2-ones are of significant interest. We developed an approach to 5-spiro-substituted 3-amino-1,5-dihydro-2H-pyrrol-2-ones that could not be obtained using previously reported approaches (reactions of 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones with amines). The developed approach is based on the thermal decomposition of 1,3-disubstituted urea derivatives of 5-spiro-substituted 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones, which were prepared via their reaction with carbodiimides

    ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis

    No full text
    CrAssphages are an extensive and ubiquitous family of tailed bacteriophages, predicted to infect bacteria of the order Bacteroidales. Despite being found in ~50% of individuals and representing up to 90% of human gut viromes, members of this viral family have never been isolated in culture and remain understudied. Here, we report the isolation of a CrAssphage (ΦCrAss001) from human faecal material. This bacteriophage infects the human gut symbiont Bacteroides intestinalis, confirming previous in silico predictions of the likely host. DNA sequencing demonstrates that the bacteriophage genome is circular, 102 kb in size, and has unusual structural traits. In addition, electron microscopy confirms that ΦcrAss001 has a podovirus-like morphology. Despite the absence of obvious lysogeny genes, ΦcrAss001 replicates in a way that does not disrupt proliferation of the host bacterium, and is able to maintain itself in continuous host culture during several weeks

    Temperate bacteriophages infecting the mucin-degrading bacterium Ruminococcus gnavus from the human gut

    No full text
    ABSTRACTRuminococcus gnavus is a prevalent gut microbe reported to occur in higher abundance among individuals with inflammatory bowel disease (IBD). This study reports the isolation and characterization of six bacteriophages (phages) isolated from human fecal material and environmental samples that infect this species. Isolated phages have a siphovirus morphology, with genomes ranging between 36.5 and 37.8 kbp. Genome analysis indicates that the phages have a temperate lifestyle, which was confirmed by their ability to form lysogens on their host bacterial species. In contrast to the finding that phages lyse their host in liquid medium, results from a mouse trial indicate these phages can co-exist with the host bacterium in the gut without causing a significant reduction of R. gnavus. The bacterial counts in the feces of phage-treated mice did not significantly differ in the presence of phage. Furthermore, analysis of publicly available gut virome sequence data indicates a high abundance of these phages among individuals suffering from IBD. This work provides the first insight into how phages interact with R. gnavus in the human gut microbiome

    Viral biogeography of the mammalian gut and parenchymal organs

    No full text
    The mammalian virome has been linked to health and disease but our understanding of how it is structured along the longitudinal axis of the mammalian gastrointestinal tract (GIT) and other organs is limited. Here, we report a metagenomic analysis of the prokaryotic and eukaryotic virome occupying luminal and mucosa-associated habitats along the GIT, as well as parenchymal organs (liver, lung and spleen), in two representative mammalian species, the domestic pig and rhesus macaque (six animals per species). Luminal samples from the large intestine of both mammals harboured the highest loads and diversity of bacteriophages (class Caudoviricetes, family Microviridae and others). Mucosal samples contained much lower viral loads but a higher proportion of eukaryotic viruses (families Astroviridae, Caliciviridae, Parvoviridae). Parenchymal organs contained bacteriophages of gut origin, in addition to some eukaryotic viruses. Overall, GIT virome composition was specific to anatomical region and host species. Upper GIT and mucosa-specific viruses were greatly under-represented in distal colon samples (a proxy for faeces). Nonetheless, certain viral and phage species were ubiquitous in all samples from the oral cavity to the distal colon. The dataset and its accompanying methodology may provide an important resource for future work investigating the biogeography of the mammalian gut virome

    Viral biogeography of the mammalian gut and parenchymal organs

    No full text
    The mammalian virome has been linked to health and disease but our understanding of how it is structured along the longitudinal axis of the mammalian gastrointestinal tract (GIT) and other organs is limited. Here, we report a metagenomic analysis of the prokaryotic and eukaryotic virome occupying luminal and mucosa-associated habitats along the GIT, as well as parenchymal organs (liver, lung and spleen), in two representative mammalian species, the domestic pig and rhesus macaque (six animals per species). Luminal samples from the large intestine of both mammals harboured the highest loads and diversity of bacteriophages (class Caudoviricetes, family Microviridae and others). Mucosal samples contained much lower viral loads but a higher proportion of eukaryotic viruses (families Astroviridae, Caliciviridae, Parvoviridae). Parenchymal organs contained bacteriophages of gut origin, in addition to some eukaryotic viruses. Overall, GIT virome composition was specific to anatomical region and host species. Upper GIT and mucosa-specific viruses were greatly under-represented in distal colon samples (a proxy for faeces). Nonetheless, certain viral and phage species were ubiquitous in all samples from the oral cavity to the distal colon. The dataset and its accompanying methodology may provide an important resource for future work investigating the biogeography of the mammalian gut virome
    corecore