4 research outputs found

    Effect of Er:YAG laser enamel conditioning and moisture on the microleakage of a hydrophilic sealant

    Get PDF
    For a given sealant, successful pit and fissure sealing is principally governed by the enamel conditioning technique and the presence of moisture contamination. A new generation of hydrophilic resin sealants is reported to tolerate moisture. This study investigates the impact of Er:YAG laser pre-conditioning and moisture contamination on the microleakage of a recent hydrophilic sealant. Occlusal surfaces of extracted human molars were either acid etched (n = 30), or successively lased and acid etched (n = 30). Ten teeth from each group were either air-dried, water-contaminated, or saliva-contaminated prior to sealing with UltraSeal XT® hydro™. Samples were inspected for penetration of fuchsin dye following 3000 thermocycles between 5 and 50 °C, and the enamel–sealant interfaces were observed by scanning electron microscopy (SEM). Significant differences in microleakage were evaluated using the Mann–Whitney U test with Bonferroni adjustment (p = 0.05). Laser pre-conditioning significantly reduced dye penetration irrespective of whether the enamel surface was moist or dry. Microleakageof water-contaminated acid etched teeth was significantly greater than that of their air-dried or saliva-contaminated counterparts. SEM analysis demonstrated good adaptation in all groups with the exception of water-contaminated acid etched teeth which exhibited relatively wide gaps. In conclusion, this hydrophilic sealant tolerates the presence of saliva, although water was found to impair its sealing ability. Laser pre-conditioning significantly decreases microleakage in all cases

    Characterisation and microleakage of a new hydrophilic fissure sealant – UltraSeal XT® hydro™

    Get PDF
    Objectives: The new hydrophilic fissure sealant, UltraSeal XT® hydro™ (Ultradent Products, USA), was characterised and its in vitro resistance to microleakage after placement on conventionally acid etched and sequentially lased and acid etched molars was investigated. Materials and Methods: The sealant was characterised by Fourier transform infra-red spectroscopy, (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and Vickers indentation test. Occlusal surfaces of extracted human molars were either conventionally acid etched (n = 10), or sequentially acid etched and laser irradiated (n = 10). UltraSeal XT® hydro™ was applied to both groups of teeth which were then subjected to 2500 thermocycles between 5 and 55 °C prior to microleakage assessment by fuchsin dye penetration. Results: UltraSeal XT® hydro™ is an acrylate-based sealant which achieved a degree of conversion of 50.6 ± 2.2% and a Vickers microhardness of 24.2 ± 1.5 under standard light curing (1000 mWcm-2 for 20 s). Fluoride ion release was negligible within a 14-day period. SEM and EDX analyses indicated that the sealant comprises irregular sub-micron and nano-sized silicon-, barium- and aluminium-bearing filler phases embedded within a ductile matrix. Laser preconditioning was found to significantly reduce microleakage (Mann-Whitney U test, p < 0.001). The lased teeth presented enhanced surface roughness on a 50 to 100 μm scale which caused the segregation and concentration of the filler particles at the enamel-sealant interface. Conclusion: Laser preconditioning significantly decreased microleakage and increased enamel surface roughness which caused zoning of the filler particles at the enamel-sealant interface

    The impact of Er:YAG laser enamel conditioning on the microleakage of a new hydrophilic sealant — UltraSeal XT® hydro™

    Get PDF
    UltraSeal XT® hydro™ is a new hydrophilic, light-cured, methacrylate-based pit and fissure sealant which has been developed by Ultradent Products, USA. The sealant is highly filled with a 53 wt.% mixture of inorganic particles which confer both thixotropy and radiopacity. The principal purpose of this study was to investigate the microleakage of UltraSeal XT® hydro™ as a function of different enamel etching techniques. The occlusal surfaces of sound, extracted human molars were either acid etched, Er:YAG laser irradiated or successively laser irradiated and acid etched. UltraSeal XT® hydro™ was applied to each group of teeth (n=10) which were subjected to a thermocycling process consisting of 2500 cycles between 5 and 50°C with a dwell time of 30s. Microleakage assessments were then carried out using 0.5 % fuchsin dye and optical microscopy. The microleakage score data were analysed using the Kruskal-Wallis, Mann–Whitney U test with Bonferroni adjustment. No significant differences in microleakage were noted between the individually acid etched and laser-irradiated groups (p>0.05); however, teeth treated with a combination of laser irradiation and acid etching demonstrated significantly lower microleakage scores (p<0.001). Electron microscopy with energy-dispersive X-ray analysis revealed that the mineral filler component of UltraSeal XT® hydro™ essentially comprises micrometre-sized particles of inorganic silicon-, aluminium- and barium-bearing phases. Laser etching increases the roughness of the enamel surface which causes a concentrated zoning of the filler particles at the enamel-sealant interface

    The impact of Er:YAG laser enamel conditioning on the microleakage of a new hydrophilic sealant — UltraSeal XT® hydro™

    Get PDF
    UltraSeal XT® hydro™ is a new hydrophilic, light-cured, methacrylate-based pit and fissure sealant which has been developed by Ultradent Products, USA. The sealant is highly filled with a 53 wt.% mixture of inorganic particles which confer both thixotropy and radiopacity. The principal purpose of this study was to investigate the microleakage of UltraSeal XT® hydro™ as a function of different enamel etching techniques. The occlusal surfaces of sound, extracted human molars were either acid etched, Er:YAG laser irradiated or successively laser irradiated and acid etched. UltraSeal XT® hydro™ was applied to each group of teeth (n=10) which were subjected to a thermocycling process consisting of 2500 cycles between 5 and 50°C with a dwell time of 30s. Microleakage assessments were then carried out using 0.5 % fuchsin dye and optical microscopy. The microleakage score data were analysed using the Kruskal-Wallis, Mann–Whitney U test with Bonferroni adjustment. No significant differences in microleakage were noted between the individually acid etched and laser-irradiated groups (p>0.05); however, teeth treated with a combination of laser irradiation and acid etching demonstrated significantly lower microleakage scores (p<0.001). Electron microscopy with energy-dispersive X-ray analysis revealed that the mineral filler component of UltraSeal XT® hydro™ essentially comprises micrometre-sized particles of inorganic silicon-, aluminium- and barium-bearing phases. Laser etching increases the roughness of the enamel surface which causes a concentrated zoning of the filler particles at the enamel-sealant interface
    corecore