46 research outputs found

    Improved Nearside-Farside Decomposition of Elastic Scattering Amplitudes

    Get PDF
    A simple technique is described, that provides improved nearside-farside (NF) decompositions of elastic scattering amplitudes. The technique, involving the resummation of a Legendre partial wave series, reduces the importance of unphysical contributions to NF subamplitudes, which can arise in more conventional NF decompositions. Applications are made to a strong absorption model and to a 16^{16}O + 12^{12}C optical potential at Elab=132E_{\text{lab}} = 132 MeV.Comment: 5 pages, 2 figure

    Alpha-cluster Condensations in Nuclei and Experimental Approaches for their Studies

    Full text link
    The formation of alpha-clusters in nuclei close to the decay thresholds is discussed. These states can be considered to be boson-condensates, which are formed in a second order phase transition in a mixture of nucleons and alpha-particles. The de Broglie wavelength of the alpha-particles is larger than the nuclear diameter, therefore the coherent properties of the alpha-particles give particular effects for the study of such states. The states are above the thresholds thus the enhanced emission of multiple-alphas into the same direction is observed. The probability for the emission of multiple-alphas is not described by Hauser-Feshbach theory for compound nucleus decay.Comment: 21 pages, 12 figures

    Inverse kinematics proton scattering from the exotic nucleus 22^{22}O

    Get PDF
    NESTER PTHInternational audienceWe have measured for the first time elastic and inelastic proton scattering from the neutron rich nucleus 22O at 46.6 AMeV using the MUST array

    Coupling effects in the elastic scattering of 6^{6}He on 12^{12}C

    Get PDF
    To study the effect of the weak binding energy on the interaction potential between a light exotic nucleus and a target, elastic scattering of 6He at 38.3 MeV/nucleon on a 12C target was measured at Grand Accélérateur National d'Ions Lourds (GANIL). The 6He beam was produced by fragmentation. The detection of the scattered particles was performed by the GANIL spectrometer. The energy resolution was good enough to separate elastic from inelastic scattering contributions. The measured elastic data have been analyzed within the optical model, with the real part of the optical potential calculated in the double-folding model using a realistic density-dependent nucleon-nucleon interaction and the imaginary part taken in the conventional Woods-Saxon (WS) form. A failure of the "bare" real folded potential to reproduce the measured angular distribution over the whole angular range suggests quite a strong coupling of the higher-order breakup channels to the elastic channel. To estimate the strength of the breakup effects, a complex surface potential with a repulsive real part (designed to simulate the polarization effects caused by the projectile breakup) was added to the real folded and imaginary WS potentials. A realistic estimate of the polarization potential caused by the breakup of the weakly bound 6He was made based on a parallel study of 6He+12C and 6Li+12C optical potentials at about the same energies

    Molecular Dynamics for Fermions

    Full text link
    The time-dependent variational principle for many-body trial states is used to discuss the relation between the approaches of different molecular dynamics models to describe indistinguishable fermions. Early attempts to include effects of the Pauli principle by means of nonlocal potentials as well as more recent models which work with antisymmetrized many-body states are reviewed under these premises. Keywords: Many-body theory; Fermion system; Molecular dynamics; Wave-packet dynamics; Time-dependent variational principle; Statistical properties; Canonical ensemble; Ergodicity; Time averagingComment: 97 pages, 13 postscript figures. To be published in July 2000 issue of Reviews of Modern Physics. More information at http://www-aix.gsi.de/~fmd

    Nuclear Alpha-Particle Condensates

    Full text link
    The α\alpha-particle condensate in nuclei is a novel state described by a product state of α\alpha's, all with their c.o.m. in the lowest 0S orbit. We demonstrate that a typical α\alpha-particle condensate is the Hoyle state (Ex=7.65E_{x}=7.65 MeV, 02+0^+_2 state in 12^{12}C), which plays a crucial role for the synthesis of 12^{12}C in the universe. The influence of antisymmentrization in the Hoyle state on the bosonic character of the α\alpha particle is discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle state, therefore, are predominant. It is conjectured that α\alpha-particle condensate states also exist in heavier nαn\alpha nuclei, like 16^{16}O, 20^{20}Ne, etc. For instance the 06+0^+_6 state of 16^{16}O at Ex=15.1E_{x}=15.1 MeV is identified from a theoretical analysis as being a strong candidate of a 4α4\alpha condensate. The calculated small width (34 keV) of 06+0^+_6, consistent with data, lends credit to the existence of heavier Hoyle-analogue states. In non-self-conjugated nuclei such as 11^{11}B and 13^{13}C, we discuss candidates for the product states of clusters, composed of α\alpha's, triton's, and neutrons etc. The relationship of α\alpha-particle condensation in finite nuclei to quartetting in symmetric nuclear matter is investigated with the help of an in-medium modified four-nucleon equation. A nonlinear order parameter equation for quartet condensation is derived and solved for α\alpha particle condensation in infinite nuclear matter. The strong qualitative difference with the pairing case is pointed out.Comment: 71 pages, 41 figures, review article, to be published in "Cluster in Nuclei (Lecture Notes in Physics) - Vol.2 -", ed. by C. Beck, (Springer-Verlag, Berlin, 2011

    Mean-field study of hot beta-stable protoneutron star matter: Impact of the symmetry energy and nucleon effective mass

    No full text
    Accepted for publication in Physical Review CInternational audienceA consistent Hartree-Fock study of the equation of state (EOS) of asymmetric nuclear matter at finite temperature has been performed using realistic choices of the effective, density dependent nucleon-nucleon (NN) interaction, which were successfully used in different nuclear structure and reaction studies. Given the importance of the nuclear symmetry energy in the neutron star formation, EOS's associated with different behaviors of the symmetry energy were used to study hot asymmetric nuclear matter. The slope of the symmetry energy and nucleon effective mass with increasing baryon density was found to affect the thermal properties of nuclear matter significantly. Different density dependent NN interactions were further used to study the EOS of hot protoneutron star (PNS) matter of the npeμνnpe\mu\nu composition in β\beta-equilibrium. The hydrostatic configurations of PNS in terms of the maximal gravitational mass MmaxM_{\rm max} and radius, central density, pressure and temperature at the total entropy per baryon S/A=1,2S/A= 1,2 and 4 have been determined in both the neutrino-free and neutrino-trapped scenarios. The obtained results show consistently a strong impact of the symmetry energy and nucleon effective mass on thermal properties and composition of hot PNS matter. MmaxM_{\rm max} values obtained for the (neutrino-free) β\beta-stable PNS at S/A=4S/A=4 were used to assess time tBHt_{\rm BH} of the collapse of 40 M⊙M_\odot protoneutron progenitor to black hole, based on a correlation between tBHt_{\rm BH} and MmaxM_{\rm max} found from the hydrodynamic simulation by Hempel {\it et al.}
    corecore