33 research outputs found

    Three years of global carbon monoxide from SCIAMACHY: comparison with MOPITT and first results related to the detection of enhanced CO over cities

    Get PDF
    Carbon monoxide (CO) is an important atmospheric constituent affecting air quality and climate. SCIAMACHY on ENVISAT is currently the only satellite instrument that can measure the vertical column of CO with nearly equal sensitivity at all altitudes down to the Earth's surface because of its near-infrared nadir observations of reflected solar radiation. Here we present three years' (2003–2005) of SCIAMACHY CO columns consistently retrieved with the latest version of our retrieval algorithm (WFMDv0.6). We describe the retrieval method and discuss the multi-year global CO data set focusing on a comparison with the operational CO column data product of MOPITT. We found reasonable to good agreement (~20%) with MOPITT, with the best agreement for 2004. We present detailed results for various regions (Europe, Middle East, India, China) and discuss to what extent enhanced levels of CO can be detected over populated areas including individual cities. The expected CO signal from cities is close to or even below the detection limit of individual measurements. We show that cities can be identified when averaging long time series

    Neurocognitive functions as an indicator of subjective adaptation to involutionary processes

    Full text link
    This neuropsychological study focuses on cognitive correlates of a successful process of adaptation to involutional processes. We examined 94 elderly people without pronounced cognitive impairments. It was shown that adaptation positively correlates with cognitive functions and negatively with comorbidity; the most significant predictors of successful adaptation to involutional processes are semantic memory and the rate of anticipatory processes

    The Horizontal Component of Photospheric Plasma Flows During the Emergence of Active Regions on the Sun

    Full text link
    The dynamics of horizontal plasma flows during the first hours of the emergence of active region magnetic flux in the solar photosphere have been analyzed using SOHO/MDI data. Four active regions emerging near the solar limb have been considered. It has been found that extended regions of Doppler velocities with different signs are formed in the first hours of the magnetic flux emergence in the horizontal velocity field. The flows observed are directly connected with the emerging magnetic flux; they form at the beginning of the emergence of active regions and are present for a few hours. The Doppler velocities of flows observed increase gradually and reach their peak values 4-12 hours after the start of the magnetic flux emergence. The peak values of the mean (inside the +/-500 m/s isolines) and maximum Doppler velocities are 800-970 m/s and 1410-1700 m/s, respectively. The Doppler velocities observed substantially exceed the separation velocities of the photospheric magnetic flux outer boundaries. The asymmetry was detected between velocity structures of leading and following polarities. Doppler velocity structures located in a region of leading magnetic polarity are more powerful and exist longer than those in regions of following polarity. The Doppler velocity asymmetry between the velocity structures of opposite sign reaches its peak values soon after the emergence begins and then gradually drops within 7-12 hours. The peak values of asymmetry for the mean and maximal Doppler velocities reach 240-460 m/s and 710-940 m/s, respectively. An interpretation of the observable flow of photospheric plasma is given.Comment: 20 pages, 10 figures, 3 tables. The results of article were presented at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102, P.4.12, http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf

    RESULTS OF THE PROGRAM FOR IMPROVING THE SUBJECTIVE WELL-BEING OF THE OLDER PEOPLE

    Full text link
    The work tested the effectiveness of a program aimed at improving the subjective well-being of older people. The study involved 55 people aged 60 to 89 years. The level of subjective well-being, depression, anxiety level, subjective level of loneliness and blood pressure were assessed. The results showed that program participants significantly improved their subjective well-being and reduced levels of anxiety, subjective loneliness, and blood pressure. The level of subjective well-being in older people contributes to the construction of personal resources and participation in projects that bring them closer to an active and healthy old age.В работе проверялась эффективность программы, направленной на повышение субъективного благополучия пожилых людей. В исследовании приняли участие 55 человек в возрасте от 60 до 89 лет. Оценивались уровень субъективного благополучия, депрессии, уровень тревожности, субъективный уровень одиночества и артериальное давление. Результаты показали, что участники программы значительно повысили уровень своего субъективного благополучия и снизили уровень тревожности, субъективного одиночества и артериального давления. Уровень субъективного благополучия у пожилых людей способствует построению личных ресурсов и участие в проектах, которые приближают их к активной и здоровой старости

    The Relationship Between Plasma Flow Doppler Velocities and Magnetic Field Parameters During the Emergence of Active Regions at the Solar Photospheric Level

    Full text link
    A statistical study has been carried out of the relationship between plasma flow Doppler velocities and magnetic field parameters during the emergence of active regions at the solar photospheric level with data acquired by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). We have investigated 224 emerging active regions with different spatial scales and positions on the solar disc. The following relationships for the first hours of the emergence of active regions have been analysed: i) of peak negative Doppler velocities with the position of the emerging active regions on the solar disc; ii) of peak plasma upflow and downflow Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the solar disc centre (the vertical component of plasma flows); iii) of peak positive and negative Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the limb (the horizontal component of plasma flows); iv) of the magnetic flux growth rate with the density of emerging magnetic flux; v) of the Doppler velocities and magnetic field parameters for the first hours of the appearance of active regions with the total unsigned magnetic flux at the maximum of their development.Comment: 14 pages, 8 figures. The results of article were presented at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102-103, P.4.13, http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf

    Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES)

    Get PDF
    We combine CO column measurements from the MOPITT, AIRS, SCIAMACHY, and TES satellite instruments in a full-year (May 2004–April 2005) global inversion of CO sources at 4°×5° spatial resolution and monthly temporal resolution. The inversion uses the GEOS-Chem chemical transport model (CTM) and its adjoint applied to MOPITT, AIRS, and SCIAMACHY. Observations from TES, surface sites (NOAA/GMD), and aircraft (MOZAIC) are used for evaluation of the a posteriori solution. Using GEOS-Chem as a common intercomparison platform shows global consistency between the different satellite datasets and with the in situ data. Differences can be largely explained by different averaging kernels and a priori information. The global CO emission from combustion as constrained in the inversion is 1350 Tg a<sup>−1</sup>. This is much higher than current bottom-up emission inventories. A large fraction of the correction results from a seasonal underestimate of CO sources at northern mid-latitudes in winter and suggests a larger-than-expected CO source from vehicle cold starts and residential heating. Implementing this seasonal variation of emissions solves the long-standing problem of models underestimating CO in the northern extratropics in winter-spring. A posteriori emissions also indicate a general underestimation of biomass burning in the GFED2 inventory. However, the tropical biomass burning constraints are not quantitatively consistent across the different datasets
    corecore